1
|
“Omic” Approaches to Bacteria and Antibiotic Resistance Identification. Int J Mol Sci 2022; 23:ijms23179601. [PMID: 36077000 PMCID: PMC9455953 DOI: 10.3390/ijms23179601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022] Open
Abstract
The quick and accurate identification of microorganisms and the study of resistance to antibiotics is crucial in the economic and industrial fields along with medicine. One of the fastest-growing identification methods is the spectrometric approach consisting in the matrix-assisted laser ionization/desorption using a time-of-flight analyzer (MALDI-TOF MS), which has many advantages over conventional methods for the determination of microorganisms presented. Thanks to the use of a multiomic approach in the MALDI-TOF MS analysis, it is possible to obtain a broad spectrum of data allowing the identification of microorganisms, understanding their interactions and the analysis of antibiotic resistance mechanisms. In addition, the literature data indicate the possibility of a significant reduction in the time of the sample preparation and analysis time, which will enable a faster initiation of the treatment of patients. However, it is still necessary to improve the process of identifying and supplementing the existing databases along with creating new ones. This review summarizes the use of “-omics” approaches in the MALDI TOF MS analysis, including in bacterial identification and antibiotic resistance mechanisms analysis.
Collapse
|
2
|
Classification of Environmental Strains from Order to Genus Levels Using Lipid and Protein MALDI-ToF Fingerprintings and Chemotaxonomic Network Analysis. Microorganisms 2022; 10:microorganisms10040831. [PMID: 35456880 PMCID: PMC9032901 DOI: 10.3390/microorganisms10040831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
During the last two decades, MALDI-ToF mass spectrometry has become an efficient and widely-used tool for identifying clinical isolates. However, its use for classification and identification of environmental microorganisms remains limited by the lack of reference spectra in current databases. In addition, the interpretation of the classical dendrogram-based data representation is more difficult when the quantity of taxa or chemotaxa is larger, which implies problems of reproducibility between users. Here, we propose a workflow including a concurrent standardized protein and lipid extraction protocol as well as an analysis methodology using the reliable spectra comparison algorithm available in MetGem software. We first validated our method by comparing protein fingerprints of highly pathogenic bacteria from the Robert Koch Institute (RKI) open database and then implemented protein fingerprints of environmental isolates from French Guiana. We then applied our workflow for the classification of a set of protein and lipid fingerprints from environmental microorganisms and compared our results to classical genetic identifications using 16S and ITS region sequencing for bacteria and fungi, respectively. We demonstrated that our protocol allowed general classification at the order and genus level for bacteria whereas only the Botryosphaeriales order can be finely classified for fungi.
Collapse
|
3
|
Borisov RS, Matveeva MD, Zaikin VG. Reactive Matrices for Analytical Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry. Crit Rev Anal Chem 2021; 53:1027-1043. [PMID: 34969337 DOI: 10.1080/10408347.2021.2001309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
In recent years, a special focus is placed on the usage of reactive matrices for analytical matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). Since 2003, when the term "reactive matrices" was suggested and the dignity of compounds, possessing dualistic properties as matrices and derivatization agents was demonstrated, corresponding approach has found application in various fields and, in particular, in bioanalysis (metabolomics, lipidomics, etc.). The main advantage of this methodology is that it reduces sample treatment time, simplifies the procedure of sample handling, improves the sensitivity of analysis, enhances the molecular identification and profiling. Within the framework of this review, the main attention is paid to "true" reactive matrices that interact with analyte molecules through an exchange or addition reactions. A special section discusses practical application of reactive matrices in the determination of the distribution of targeted and non-targeted organic substances on the surface of biological tissue sections by MALDI-MS imaging. In this critical review, a controversial proposal is made to consider protonating and deprotonating matrices as reactive, because they can undergo a chemical reaction such as proton transfer that occurs in both target solution and MALDI plume. In this respect, special attention is paid to "proton sponge" matrices that have found a wide application in the analysis of various acidic compounds by MALDI-MS in the negative mode. Historical data on the formation of ions and the fate of matrices in MALDI are considered at the beginning of this article.
Collapse
Affiliation(s)
- Roman S Borisov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| | - Mariya D Matveeva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir G Zaikin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
4
|
Qiao Z, Lissel F. MALDI Matrices for the Analysis of Low Molecular Weight Compounds: Rational Design, Challenges and Perspectives. Chem Asian J 2021; 16:868-878. [PMID: 33657276 PMCID: PMC8251880 DOI: 10.1002/asia.202100044] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Indexed: 02/03/2023]
Abstract
The analysis of low molecular weight (LMW) compounds is of great interest to detect small pharmaceutical drugs rapidly and sensitively, or to trace and understand metabolic pathways. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) plays a central role in the analysis of high molecular weight (bio)molecules. However, its application for LMW compounds is restricted by spectral interferences in the low m/z region, which are produced by conventional organic matrices. Several strategies regarding sample preparation have been investigated to overcome this problem. A different rationale is centred on developing new matrices which not only meet the fundamental requirements of good absorption and high ionization efficiency, but are also vacuum stable and "MALDI silent", i. e., do not give matrix-related signals in the LMW area. This review gives an overview on the rational design strategies used to develop matrix systems for the analysis of LMW compounds, focusing on (i) the modification of well-known matrices, (ii) the search for high molecular weight matrices, (iii) the development of binary, hybrid and nanomaterial-based matrices, (iv) the advance of reactive matrices and (v) the progress made regarding matrices for negative or dual polarity mode.
Collapse
Affiliation(s)
- Zhi Qiao
- Institute of Macromolecular Chemistry, Leibniz Institute for Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany) Faculty of Chemistry and Food ChemistryDresden University of Technology, Mommsenstr. 401062DresdenGermany
| | - Franziska Lissel
- Institute of Macromolecular Chemistry, Leibniz Institute for Polymer Research Dresden, Hohe Str. 6, 01069 Dresden (Germany) Faculty of Chemistry and Food ChemistryDresden University of Technology, Mommsenstr. 401062DresdenGermany
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University JenaHumboldtstr. 1007743JenaGermany
| |
Collapse
|
5
|
Solntceva V, Kostrzewa M, Larrouy-Maumus G. Detection of Species-Specific Lipids by Routine MALDI TOF Mass Spectrometry to Unlock the Challenges of Microbial Identification and Antimicrobial Susceptibility Testing. Front Cell Infect Microbiol 2021; 10:621452. [PMID: 33634037 PMCID: PMC7902069 DOI: 10.3389/fcimb.2020.621452] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
MALDI-TOF mass spectrometry has revolutionized clinical microbiology diagnostics by delivering accurate, fast, and reliable identification of microorganisms. It is conventionally based on the detection of intracellular molecules, mainly ribosomal proteins, for identification at the species-level and/or genus-level. Nevertheless, for some microorganisms (e.g., for mycobacteria) extensive protocols are necessary in order to extract intracellular proteins, and in some cases a protein-based approach cannot provide sufficient evidence to accurately identify the microorganisms within the same genus (e.g., Shigella sp. vs E. coli and the species of the M. tuberculosis complex). Consequently lipids, along with proteins are also molecules of interest. Lipids are ubiquitous, but their structural diversity delivers complementary information to the conventional protein-based clinical microbiology matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) based approaches currently used. Lipid modifications, such as the ones found on lipid A related to polymyxin resistance in Gram-negative pathogens (e.g., phosphoethanolamine and aminoarabinose), not only play a role in the detection of microorganisms by routine MALDI-TOF mass spectrometry but can also be used as a read-out of drug susceptibility. In this review, we will demonstrate that in combination with proteins, lipids are a game-changer in both the rapid detection of pathogens and the determination of their drug susceptibility using routine MALDI-TOF mass spectrometry systems.
Collapse
Affiliation(s)
- Vera Solntceva
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| | | | - Gerald Larrouy-Maumus
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Krivosheina MS, Borisov RS, Zhilyaev DI, Matveeva MD, Zaikin VG. New suitable deprotonating matrices for the analysis of carboxylic acids and some acidic compounds by matrix-assisted laser desorption/ionization mass spectrometry in negative ion mode. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e8954. [PMID: 32979299 DOI: 10.1002/rcm.8954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Direct non-derivatization analysis of organic acids and acidic compounds by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) in positive ion mode is not always possible due to the low ionization efficiency of analytes. Some new efficient deprotonating matrices were suggested that allowed the production of negative ions from acidic compounds during MALDI-MS experiments. METHODS Various tested carboxyl-containing compounds as well as compounds with acidic properties were mixed with the suggested deprotonating matrices [4-dimethylaminobenzaldehyde (DMABA), N,N-dimethylamino-p-phenylenediamine or 3-aminoquinoline] and applied on a standard MALDI target followed by recording MALDI mass spectra in negative ion mode. RESULTS All the tested acidic compounds mixed with the suggested deprotonating matrices produced abundant [M - H]- ions under MALDI conditions. DMABA produced the strongest signals reflecting greater sensitivity of analysis. CONCLUSIONS The suggested deprotonating matrices are commercially available compounds and are good alternatives to well-known matrices of this kind and, in particular, the often used 9-aminoacridine. DMABA is the best of the tested potential matrices and is suitable for the detection of low molecular weight carboxyl-containing compounds, substituted phenols, and mixtures of naphthenic acids by (-)MALDI-MS.
Collapse
Affiliation(s)
- Mariya S Krivosheina
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr. 29, Moscow, 119991, Russian Federation
| | - Roman S Borisov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr. 29, Moscow, 119991, Russian Federation
- People's Friendship University of Russia, ul. Miklukho-Maklay 6, Moscow, 117198, Russian Federation
| | - Dmitry I Zhilyaev
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr. 29, Moscow, 119991, Russian Federation
- People's Friendship University of Russia, ul. Miklukho-Maklay 6, Moscow, 117198, Russian Federation
| | - Mariya D Matveeva
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr. 29, Moscow, 119991, Russian Federation
| | - Vladimir G Zaikin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr. 29, Moscow, 119991, Russian Federation
| |
Collapse
|
7
|
Lellman SE, Cramer R. Bacterial identification by lipid profiling using liquid atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry. ACTA ACUST UNITED AC 2019; 58:930-938. [DOI: 10.1515/cclm-2019-0908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/25/2019] [Indexed: 12/16/2022]
Abstract
Abstract
Background
In recent years, mass spectrometry (MS) has been applied to clinical microbial biotyping, exploiting the speed of matrix-assisted laser desorption/ionization (MALDI) in recording microbe-specific MS profiles. More recently, liquid atmospheric pressure (AP) MALDI has been shown to produce extremely stable ion flux from homogenous samples and ‘electrospray ionization (ESI)-like’ multiply charged ions for larger biomolecules, whilst maintaining the benefits of traditional MALDI including high tolerance to contaminants, low analyte consumption and rapid analysis. These and other advantages of liquid AP-MALDI MS have been explored in this study to investigate its potential in microbial biotyping.
Methods
Genetically diverse bacterial strains were analyzed using liquid AP-MALDI MS, including clinically relevant species such as Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae. Bacterial cultures were subjected to a simple and fast extraction protocol using ethanol and formic acid. Extracts were spotted with a liquid support matrix (LSM) and analyzed using a Synapt G2-Si mass spectrometer with an in-house built AP-MALDI source.
Results
Each species produces a unique lipid profile in the m/z range of 400–1100, allowing species discrimination. Traditional (solid) MALDI MS produced spectra containing a high abundance of matrix-related clusters and an absence of lipid peaks. The MS profiles of the bacterial species tested form distinct clusters using principle component analysis (PCA) with a classification accuracy of 98.63% using a PCA-based prediction model.
Conclusions
Liquid AP-MALDI MS profiles can be sufficient to distinguish clinically relevant bacterial pathogens and other bacteria, based on their unique lipid profiles. The analysis of the lipid MS profiles is typically excluded from commercial instruments approved for clinical diagnostics.
Collapse
Affiliation(s)
- Sophie E. Lellman
- Department of Chemistry , University of Reading , Whiteknights, Reading , UK
| | - Rainer Cramer
- Department of Chemistry , University of Reading , Whiteknights, Reading , UK
| |
Collapse
|
8
|
Ventura G, Calvano CD, Abbattista R, Bianco M, De Ceglie C, Losito I, Palmisano F, Cataldi TRI. Characterization of bioactive and nutraceutical compounds occurring in olive oil processing wastes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1670-1681. [PMID: 31268208 DOI: 10.1002/rcm.8514] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Several bioactive compounds, including phenolic acids and secoiridoids, are transferred from olive drupes to olive oil during the first stage of production. Here, the characterization of these low molecular weight (LMW) compounds in olive oil and in closely related processing materials, like olive leaves (OL) and olive mill wastewaters (OMW), was faced up, for the first time, by matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF MS). METHODS A novel binary matrix composed of 1,8-bis(tetramethylguanidino)naphthalene (TMGN) and 9-aminoacridine (9AA) (1:1 molar ratio), displaying excellent ionization properties at low levels of laser energy, was employed in reflectron negative ion mode by a MALDI TOF/TOF system equipped with a neodymium-doped yttrium lithium fluoride (Nd:YLF) laser (345 nm). MS/MS experiments were performed by using ambient air as the collision gas. RESULTS Four major secoiridoids typically present in olive oil, i.e., the aglycones of oleuropein and ligstroside, and oleacein and olecanthal at m/z 377.1, 361.1, 319.1 and 303.1, respectively, were detected in virgin olive oil (VOO) extracts, along with some of their chemical/enzymatic hydrolysis by-products, such as elenolic (m/z 241.1), decarboxymethyl-elenolic acids (m/z 183.1) and hydroxytyrosol (m/z 153.1). Besides oleuropein aglycone and oleacein, hydroxylated derivatives of decarboxymethyl-elenolic acid and hydroxytyrosol were evidenced in OMW. CONCLUSIONS While oleuropein was confirmed in OL extracts, several interesting phenolic compounds, including hydroxytyrosol, were recognized in OMW. The proposed approach based on the use of a novel binary matrix for MALDI MS/MS analyses of LMW bioactive compounds can be considered a promising analytical tool for a rapid screening of the phenolic fraction in olive oils and related processing wastes.
Collapse
Affiliation(s)
- Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Cosima D Calvano
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Ramona Abbattista
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Mariachiara Bianco
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Cristina De Ceglie
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Ilario Losito
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Francesco Palmisano
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| | - Tommaso R I Cataldi
- Centro di Ricerca Interdipartimentale SMART, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona, 4, 70126, Bari, Italy
| |
Collapse
|
9
|
Chen SH, Parker CH, Croley TR, McFarland MA. Identification of Salmonella Taxon-Specific Peptide Markers to the Serovar Level by Mass Spectrometry. Anal Chem 2019; 91:4388-4395. [PMID: 30860807 DOI: 10.1021/acs.analchem.8b04843] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present an LC-MS/MS pipeline to identify taxon-specific tryptic peptide markers for the identification of Salmonella at the genus, species, subspecies, and serovar levels of specificity. Salmonella enterica subsp. enterica serovars Typhimurium and its four closest relatives, Saintpaul, Heidelberg, Paratyphi B, and Muenchen, were evaluated. A decision-tree approach was used to identify peptides common to the five Salmonella proteomes for evaluation as genus-, species-, and subspecies-specific markers. Peptides identified for two or fewer Salmonella strains were evaluated as potential serovar markers. Currently, there are approximately 140 000 assembled bacterial genomes publicly available, more than 8500 of which are for Salmonella. Consequently, the specificity of each candidate peptide marker was confirmed across all publicly available protein sequences in the NCBI nonredundant (nr) database. The performance of a subset of candidate taxon-specific peptide markers was evaluated in a targeted mass-spectrometry method. The presented workflow offers a marked improvement in specificity over existing MALDI-TOF-based bacterial identification platforms for the identification of closely related Salmonella serovars.
Collapse
Affiliation(s)
- Shu-Hua Chen
- U.S. Food and Drug Administration , Center for Food Safety and Applied Nutrition , College Park , Maryland 20740 , United States
| | - Christine H Parker
- U.S. Food and Drug Administration , Center for Food Safety and Applied Nutrition , College Park , Maryland 20740 , United States
| | - Timothy R Croley
- U.S. Food and Drug Administration , Center for Food Safety and Applied Nutrition , College Park , Maryland 20740 , United States
| | - Melinda A McFarland
- U.S. Food and Drug Administration , Center for Food Safety and Applied Nutrition , College Park , Maryland 20740 , United States
| |
Collapse
|
10
|
Calvano CD, Monopoli A, Cataldi TRI, Palmisano F. MALDI matrices for low molecular weight compounds: an endless story? Anal Bioanal Chem 2018; 410:4015-4038. [DOI: 10.1007/s00216-018-1014-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/27/2018] [Accepted: 03/08/2018] [Indexed: 10/17/2022]
|
11
|
Ibrahim H, Jurcic K, Wang JSH, Whitehead SN, Yeung KKC. 1,6-Diphenyl-1,3,5-hexatriene (DPH) as a Novel Matrix for MALDI MS Imaging of Fatty Acids, Phospholipids, and Sulfatides in Brain Tissues. Anal Chem 2017; 89:12828-12836. [PMID: 29095596 DOI: 10.1021/acs.analchem.7b03284] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
1,6-Diphenyl-1,3,5-hexatriene (DPH) is a commonly used fluorescence probe for studying cell membrane-lipids due to its affinity toward the acyl chains in the phospholipid bilayers. In this work, we investigated its use in matrix-assisted laser desorption/ionization (MALDI) as a new matrix for mass spectrometry imaging (MSI) of mouse and rat brain tissue. DPH exhibits very minimal matrix-induced background signals for the analysis of small molecules (below m/z of 1000). In the negative ion mode, DPH permits the highly sensitive detection of small fatty acids (m/z 200-350) as well as a variety of large lipids up to m/z of 1000, including lyso-phospholipid, phosphatidic acid (PA), phosphoethanolamine (PE), phosphatidylserine (PS), phosphatidylglycerol (PG), phosphatidylinositol (PI), and sulfatides (ST). The analytes were mostly detected as the deprotonated ion [M - H]-. Our results also demonstrate that sublimated DPH is stable for at least 24 h under the vacuum of our MALDI mass spectrometer. The ability to apply DPH via sublimation coupled with its low volatility allows us to perform tissue imaging of the above analytes at high spatial resolution. The degree of lipid fragmentation was determined experimentally at varying laser intensities. The results illustrated that the use of relatively low laser energy is important to minimize the artificially generated fatty acid signals. On the other hand, the lipid fragmentation obtained at higher laser energies provided tandem MS information useful for lipid structure elucidation.
Collapse
Affiliation(s)
- Hanadi Ibrahim
- Department of Chemistry, ‡Department of Biochemistry, and §Department of Anatomy and Cell Biology, The University of Western Ontario , London, Ontario, Canada
| | - Kristina Jurcic
- Department of Chemistry, ‡Department of Biochemistry, and §Department of Anatomy and Cell Biology, The University of Western Ontario , London, Ontario, Canada
| | - Jasmine S-H Wang
- Department of Chemistry, ‡Department of Biochemistry, and §Department of Anatomy and Cell Biology, The University of Western Ontario , London, Ontario, Canada
| | - Shawn N Whitehead
- Department of Chemistry, ‡Department of Biochemistry, and §Department of Anatomy and Cell Biology, The University of Western Ontario , London, Ontario, Canada
| | - Ken K-C Yeung
- Department of Chemistry, ‡Department of Biochemistry, and §Department of Anatomy and Cell Biology, The University of Western Ontario , London, Ontario, Canada
| |
Collapse
|
12
|
Afanasyeva EF, Syryamina VN, Dzuba SA. Communication: Alamethicin can capture lipid-like molecules in the membrane. J Chem Phys 2017; 146:011103. [DOI: 10.1063/1.4973703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Ekaterina F. Afanasyeva
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia and Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Victoria N. Syryamina
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia and Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergei A. Dzuba
- Voevodsky Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, 630090 Novosibirsk, Russia and Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
13
|
AlMasoud N, Xu Y, Trivedi DK, Salivo S, Abban T, Rattray NJW, Szula E, AlRabiah H, Sayqal A, Goodacre R. Classification of Bacillus and Brevibacillus species using rapid analysis of lipids by mass spectrometry. Anal Bioanal Chem 2016; 408:7865-7878. [PMID: 27604269 PMCID: PMC5061856 DOI: 10.1007/s00216-016-9890-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 08/16/2016] [Indexed: 01/02/2023]
Abstract
Bacillus are aerobic spore-forming bacteria that are known to lead to specific diseases, such as anthrax and food poisoning. This study focuses on the characterization of these bacteria by the detection of lipids extracted from 33 well-characterized strains from the Bacillus and Brevibacillus genera, with the aim to discriminate between the different species. For the purpose of analysing the lipids extracted from these bacterial samples, two rapid physicochemical techniques were used: matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) and liquid chromatography in conjunction with mass spectrometry (LC-MS). The findings of this investigation confirmed that MALDI-TOF-MS could be used to identify different bacterial lipids and, in combination with appropriate chemometrics, allowed for the discrimination between these different bacterial species, which was supported by LC-MS. The average correct classification rates for the seven species of bacteria were 62.23 and 77.03 % based on MALDI-TOF-MS and LC-MS data, respectively. The Procrustes distance for the two datasets was 0.0699, indicating that the results from the two techniques were very similar. In addition, we also compared these bacterial lipid MALDI-TOF-MS profiles to protein profiles also collected by MALDI-TOF-MS on the same bacteria (Procrustes distance, 0.1006). The level of discrimination between lipids and proteins was equivalent, and this further indicated the potential of MALDI-TOF-MS analysis as a rapid, robust and reliable method for the classification of bacteria based on different bacterial chemical components. Graphical abstract MALDI-MS has been successfully developed for the characterization of bacteria at the subspecies level using lipids and benchmarked against HPLC.
Collapse
Affiliation(s)
- Najla AlMasoud
- School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Yun Xu
- School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Drupad K Trivedi
- School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Simona Salivo
- Shimadzu, Kratos Analytical Ltd. Wharfside, Trafford Wharf Road, Manchester, M17 1GP, UK
| | - Tom Abban
- Shimadzu, Kratos Analytical Ltd. Wharfside, Trafford Wharf Road, Manchester, M17 1GP, UK
| | - Nicholas J W Rattray
- School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Ewa Szula
- School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Haitham AlRabiah
- School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.,Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia
| | - Ali Sayqal
- School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Royston Goodacre
- School of Chemistry and Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| |
Collapse
|
14
|
Calvano CD, Picca RA, Bonerba E, Tantillo G, Cioffi N, Palmisano F. MALDI-TOF mass spectrometry analysis of proteins and lipids in Escherichia coli exposed to copper ions and nanoparticles. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:828-840. [PMID: 27476478 DOI: 10.1002/jms.3823] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 07/16/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
Escherichia coli (E. coli) is one of the most important foodborne pathogens to the food industry responsible for diseases as bloody diarrhea, hemorrhagic colitis and life-threatening hemolytic-uremic syndrome. For controlling and eliminating E. coli, metal nano-antimicrobials (NAMs) are frequently used as bioactive systems for applications in food treatments. Most NAMs provide controlled release of metal ions, eventually slowing down or completely inhibiting the growth of undesired microorganisms. Nonetheless, their antimicrobial action is not totally unraveled and is strongly dependent on metal properties and environmental conditions. In this work, we propose the use of matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry as a powerful tool for direct, time efficient, plausible identification of the cell membrane damage in bacterial strains exposed to copper-based antimicrobial agents, such as soluble salts (chosen as simplified AM material) and copper nanoparticles. E. coli ATCC 25922 strain was selected as 'training bacterium' to set up some critical experimental parameters (i.e. cell concentration, selection of the MALDI matrix, optimal solvent composition, sample preparation method) for the MS analyses. The resulting procedure was then used to attain both protein and lipid fingerprints from E. coli after exposure to different loadings of Cu salts and NPs. Interestingly, bacteria exposed to copper showed over-expression of copper binding proteins and degradation of lipids when treated with soluble salt. These findings were completed with other investigations, such as microbiological experiments. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- C D Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona 4, Bari, 70126, Italy
- Centro di Ricerca Interdipartimentale S.M.A.R.T., Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona 4, Bari, 70126, Italy
| | - R A Picca
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona 4, Bari, 70126, Italy
| | - E Bonerba
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Strada provinciale per Casamassima Km 3, 70100, Valenzano (BA), Italy
| | - G Tantillo
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Strada provinciale per Casamassima Km 3, 70100, Valenzano (BA), Italy
| | - N Cioffi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona 4, Bari, 70126, Italy
- Centro di Ricerca Interdipartimentale S.M.A.R.T., Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona 4, Bari, 70126, Italy
| | - F Palmisano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona 4, Bari, 70126, Italy
- Centro di Ricerca Interdipartimentale S.M.A.R.T., Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona 4, Bari, 70126, Italy
| |
Collapse
|
15
|
Jin R, Li L, Feng J, Dai Z, Huang YW, Shen Q. Zwitterionic hydrophilic interaction solid-phase extraction and multi-dimensional mass spectrometry for shotgun lipidomic study of Hypophthalmichthys nobilis. Food Chem 2016; 216:347-54. [PMID: 27596430 DOI: 10.1016/j.foodchem.2016.08.074] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/15/2016] [Accepted: 08/22/2016] [Indexed: 02/04/2023]
Abstract
Zwitterionic hydrophilic interaction liquid chromatography (ZIC-HILIC) material was used as solid-phase extraction sorbent for purification of phospholipids from Hypophthalmichthys nobilis. The conditions were optimized to be pH 6, flow rate 2.0mL·min(-1), loading breakthrough volume ⩽5mL, and eluting solvent 5mL. Afterwards, the extracts were analyzed by multi-dimensional mass spectrometry (MDMS) based shotgun lipidomics; 20 species of phosphatidylcholine (PC), 22 species of phosphatidylethanoamine (PE), 15 species of phosphatidylserine (PS), and 5 species of phosphatidylinositol (PI) were identified, with content 224.1, 124.1, 27.4, and 34.7μg·g(-1), respectively. The MDMS method was validated in terms of linearity (0.9963-0.9988), LOD (3.7ng·mL(-1)), LOQ (9.8ng·mL(-1)), intra-day precision (<3.64%), inter-day precision (<5.31%), and recovery (78.8-85.6%). ZIC-HILIC and MDMS shotgun lipidomics are efficient for studying phospholipids in H. nobilis.
Collapse
Affiliation(s)
- Renyao Jin
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Linqiu Li
- School of Public Health, Guangdong Medical University, Dongguan, China
| | - Junli Feng
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Zhiyuan Dai
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China
| | - Yao-Wen Huang
- Department of Food Science and Technology, University of Georgia, Athens, GA, United States
| | - Qing Shen
- Institute of Seafood, Zhejiang Gongshang University, Hangzhou, China.
| |
Collapse
|
16
|
Calvano CD, Cataldi TRI, Kögel JF, Monopoli A, Palmisano F, Sundermeyer J. Superbasic alkyl-substituted bisphosphazene proton sponges: a new class of deprotonating matrices for negative ion matrix-assisted ionization/laser desorption mass spectrometry of low molecular weight hardly ionizable analytes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1680-1686. [PMID: 28328038 DOI: 10.1002/rcm.7604] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 05/07/2016] [Accepted: 05/08/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Here hardly ionizable and low molecular weight compounds are detected in negative ion mode by using novel superbasic proton sponges based on 1,8-bisphosphazenylnaphthalene (PN) as MALDI matrices. Among the selected proton sponges, 1,8-bis(trispyrrolidinophosphazenyl)naphthalene (TPPN) has shown the best behaviour as matrix since it allows the direct detection of intact cholesterol without derivatization also in real challenging samples. METHODS Very weakly acidic compounds such as sterols, steroids, fatty alcohols and saccharides were detected in reflectron negative ion mode by a MALDI TOF/TOF system equipped with a neodymium-doped yttrium lithium fluoride (Nd:YLF) laser (345 nm) with typical mass accuracy of 10 ppm. MS/MS experiments were performed by using ambient air as the collision gas. RESULTS Contrary to traditional MALDI matrices, superbasic proton sponges allowed the easy deprotonation of an alcohol functional group without a previous chemical derivatization step. Experimental evidence indicates that analyte deprotonation is achieved in the condensed phase, i.e. PN superbasic proton sponges operate according to a recently proposed model named matrix assisted ionization/laser desorption (MAILD). A detection limit of 3 pmol/spot of cholesterol (model compound) with a signal-to-noise ratio ≥ 10 was typically obtained. CONCLUSIONS For the first time, the usefulness of novel superbasic proton sponges is demonstrated for MALDI detection of hardly ionizable compounds such as sterols, steroids, fatty alcohols and saccharides. The leading candidate TPPN has been successfully applied for negative ion MAILD-MS analysis of cholesterol, fatty acids and phospholipids in egg yolk and brain tissue extracts. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- C D Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona 4, 70126, Bari, Italy
- Centro di Ricerca Interdipartimentale S.M.A.R.T., Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona 4, 70126, Bari, Italy
| | - T R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona 4, 70126, Bari, Italy
- Centro di Ricerca Interdipartimentale S.M.A.R.T., Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona 4, 70126, Bari, Italy
| | - J F Kögel
- Fachbereich Chemie, Philipps-Universitat Marburg, Hans-Meerwein-Straße, 35032, Marburg, Germany
| | - A Monopoli
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona 4, 70126, Bari, Italy
| | - F Palmisano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona 4, 70126, Bari, Italy
- Centro di Ricerca Interdipartimentale S.M.A.R.T., Università degli Studi di Bari Aldo Moro, Campus Universitario, Via E. Orabona 4, 70126, Bari, Italy
| | - J Sundermeyer
- Fachbereich Chemie, Philipps-Universitat Marburg, Hans-Meerwein-Straße, 35032, Marburg, Germany
| |
Collapse
|
17
|
Kiss A, Hopfgartner G. Laser-based methods for the analysis of low molecular weight compounds in biological matrices. Methods 2016; 104:142-53. [DOI: 10.1016/j.ymeth.2016.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/28/2016] [Accepted: 04/13/2016] [Indexed: 01/26/2023] Open
|
18
|
AlMasoud N, Correa E, Trivedi DK, Goodacre R. Fractional Factorial Design of MALDI-TOF-MS Sample Preparations for the Optimized Detection of Phospholipids and Acylglycerols. Anal Chem 2016; 88:6301-8. [DOI: 10.1021/acs.analchem.6b00512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Najla AlMasoud
- School
of Chemistry and Manchester
Institute of Biotechnology, University of Manchester, 131 Princess
Street, Manchester M1 7DN, U.K
| | - Elon Correa
- School
of Chemistry and Manchester
Institute of Biotechnology, University of Manchester, 131 Princess
Street, Manchester M1 7DN, U.K
| | - Drupad K. Trivedi
- School
of Chemistry and Manchester
Institute of Biotechnology, University of Manchester, 131 Princess
Street, Manchester M1 7DN, U.K
| | - Royston Goodacre
- School
of Chemistry and Manchester
Institute of Biotechnology, University of Manchester, 131 Princess
Street, Manchester M1 7DN, U.K
| |
Collapse
|
19
|
He M, Guo S, Ren J, Li Z. In Situ Characterizing Membrane Lipid Phenotype of Human Lung Cancer Cell Lines Using Mass Spectrometry Profiling. J Cancer 2016; 7:810-6. [PMID: 27162539 PMCID: PMC4860797 DOI: 10.7150/jca.14310] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/15/2016] [Indexed: 01/22/2023] Open
Abstract
Abnormal lipid metabolisms are closely associated with cancers. In this study, mass spectrometry was employed to in situ investigate the associations of membrane lipid phenotypes of six human lung cancer cell lines (i.e., A549, H1650, H1975 from adenocarcinoma, H157 and H1703 from squamous cell carcinomas, and H460 from a large cell carcinoma) with cancer cell types and finally total 230 lipids were detected. Based these 230 lipids, partial least-square discriminant analysis indicated that fifteen lipids (i.e., PE 18:0_18:1, PI 18:0_20:4, SM 42:2, PE 16:0_20:4, PE 36:2, PC 36:2, SM 34:1, PA 38:3,C18:0, C22:4, PA 34:2, C20:5, C20:2, C18:2, and CerP 36:2) with variable importance in the projection (VIP) value of > 1.0 could be used to differentiate six cancer cell lines with the Predicted Residual Sum of Square (PRESS) score of 0.1974. Positive correlation between polyunsaturated fatty acids (i.e., C20:4, C22:4, C22:5, and C22:6) and polyunsaturated phospholipids (PE 16:0_20:4, PE 38:4, and PI 18:0_20:4) was observed in lung adenocarcinoma cells, especially for H1975 cells. Three adenocarcinoma cell lines (i.e., A549, H1650, and H1975) could be differentiated from other lung cancer cell lines based on the expression of C18:1, C20:1, C20:2, C20:5, and C22:6.
Collapse
Affiliation(s)
- Manwen He
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, PR China
| | - Shuai Guo
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, PR China
| | - Junling Ren
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, PR China
| | - Zhili Li
- Department of Biophysics and Structural Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, PR China
| |
Collapse
|
20
|
Mikelsaar M, Sepp E, Štšepetova J, Songisepp E, Mändar R. Biodiversity of Intestinal Lactic Acid Bacteria in the Healthy Population. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 932:1-64. [DOI: 10.1007/5584_2016_3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Hansen MLRW, Clausen A, Ejsing CS, Risbo J. Modulation of the Lactobacillus acidophilus La-5 lipidome by different growth conditions. MICROBIOLOGY-SGM 2015. [PMID: 26197785 DOI: 10.1099/mic.0.000145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Probiotics are bacteria used in the food industry due to their potential health benefits. In this study, the plasma membrane of the probiotic Lactobacillus acidophilus La-5 was investigated using state-of-the-art high-resolution shotgun lipidomics. Comparisons of the lipidome of the plasma membrane were done after altering the fatty acid composition by supplementing L. acidophilus La-5 with saturated, mono-, di- and tri-unsaturated fatty acids during fermentation. The plasma membrane with the highest degree of saturation resulted in a lipid composition with the highest proportion of cardiolipin (CL) and lowest proportion of monolysocardiolipin (MLCL). No significant changes were found for other lipid classes. The bacteria grown with di- and tri-unsaturated fatty acids were expected to have more unsaturated plasma membranes than bacteria grown with mono-unsaturated fatty acids. This was also the case for MLCL, but the numbers of double bonds for CL were quite similar for these three samples. The results indicate that L. acidophilus La-5 possesses a molecular mechanism for remodelling and optimizing the fatty acid composition of CL and MLCL species and the molar ratio of CL and MLCL. This study contributes new knowledge on the previously uninvestigated lipidome of L. acidophilus La-5.
Collapse
Affiliation(s)
| | | | - Christer S Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Denmark
| | - Jens Risbo
- Department of Food Science, University of Copenhagen, Denmark
| |
Collapse
|
22
|
Improvement of chlorophyll identification in foodstuffs by MALDI ToF/ToF mass spectrometry using 1,5-diaminonaphthalene electron transfer secondary reaction matrix. Anal Bioanal Chem 2015; 407:6369-79. [PMID: 25976392 DOI: 10.1007/s00216-015-8728-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 10/23/2022]
Abstract
Chlorophylls (Chls) are important pigments responsible for the characteristic green color of chloroplasts in algae and plants. In this study, 1,5-diaminonaphthalene (DAN) was introduced as an electron transfer secondary reaction matrix for the identification of intact chlorophylls and their derivatives, by matrix-assisted laser desorption ionization (MALDI) mass spectrometry (MS). DAN was proved to drastically outperform conventional matrices such as α-cyano-4-hydroxycinnnamic acid, dithranol, antracene, and even terthiophene, since loss of the metal ion and fragmentation of the phytol-ester linkage are negligible. Absence of significant fragmentation of radical cations of Chls a and b at m/z 892.529 and 906.513, respectively, makes MALDI MS capable of following natural degradation of intact porphyrin-based pigments whose initial steps are just represented by demetalation and dephytylation. Chl by-products, such as pyropheophytins, have been identified in dried tea leaves showing the potential of MALDI MS to follow chlorophyll biotransformation occurring in processed foodstuffs. Finally, preliminary results show the potential of MALDI MS to detect illegal vegetable oil re-greening practices.
Collapse
|
23
|
On plate graphite supported sample processing for simultaneous lipid and protein identification by matrix assisted laser desorption ionization mass spectrometry. Talanta 2015; 137:161-6. [DOI: 10.1016/j.talanta.2015.01.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/19/2015] [Accepted: 01/23/2015] [Indexed: 01/27/2023]
|
24
|
Calvano CD, De Ceglie C, Zambonin CG. Development of a direct in-matrix extraction (DIME) protocol for MALDI-TOF-MS detection of glycated phospholipids in heat-treated food samples. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:831-839. [PMID: 25230180 DOI: 10.1002/jms.3416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/02/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
In foodstuffs, one of the main factors inducing modifications in phospholipids (PLs) structure is the heat treatment. Among PLs, only phosphatidylethanolamines and phosphatidylserines, due to their free amino group, can be involved in Maillard reaction and can form adducts with reducing sugars, besides other by-products called advanced glycation end-products. To date, glycated lipid products are less characterized in comparison to proteins. The aim of this work was to develop a novel, rapid and sensitive extraction protocol for the detection and characterization of modified PLs (glycated and oxidized) by means of matrix-assisted laser desorption/ionization-mass spectrometry (MALDI-MS). At first, to investigate the formation of glycated and/or short chain by-products in different classes of PLs, representative standards were heated with or without sugar (lactose or glucose) and subjected to traditional lipid extraction methods as Bligh and Dyer and to the novel direct in matrix extraction (DIME) using 1,8-bis(dimethylamino)naphthalene as preconcentrating matrix. MALDI-MS analysis in negative ion mode allowed detecting glycation and oxidation products both on fatty acid and glucose moieties. Then, the procedure was successfully applied to different heat-treated and powdered samples (milk powders, pasteurized milk, ultra-high-temperature milk and soy flour) for the detection of modified PLs in complex foods. The currently developed DIME protocol could be a powerful tool for understanding lipid glycation also in biological samples.
Collapse
Affiliation(s)
- Cosima D Calvano
- Università degli Studi di Bari Aldo Moro, Dipartimento di Chimica, Via Orabona 4, 70126, Bari, Italy
| | | | | |
Collapse
|
25
|
Timmer MSM, Sauvageau J, Foster AJ, Ryan J, Lagutin K, Shaw O, Harper JL, Sims IM, Stocker BL. Discovery of Lipids from B. longum subsp. infantis using Whole Cell MALDI Analysis. J Org Chem 2014; 79:7332-41. [DOI: 10.1021/jo501016c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mattie S. M. Timmer
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Janelle Sauvageau
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Amy J. Foster
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Jason Ryan
- Ferrier
Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Kirill Lagutin
- Ferrier
Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Odette Shaw
- Malaghan Institute of Medical Research, P.O. Box
7060, Wellington 6242, New Zealand
| | - Jacquie L. Harper
- Malaghan Institute of Medical Research, P.O. Box
7060, Wellington 6242, New Zealand
| | - Ian M. Sims
- Ferrier
Research Institute, Victoria University of Wellington, Lower Hutt, New Zealand
| | - Bridget L. Stocker
- School
of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
- Malaghan Institute of Medical Research, P.O. Box
7060, Wellington 6242, New Zealand
| |
Collapse
|
26
|
Kögel JF, Xie X, Baal E, Gesevičius D, Oelkers B, Kovačević B, Sundermeyer J. Superbasic Alkyl‐Substituted Bisphosphazene Proton Sponges: Synthesis, Structural Features, Thermodynamic and Kinetic Basicity, Nucleophilicity and Coordination Chemistry. Chemistry 2014; 20:7670-85. [DOI: 10.1002/chem.201402226] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Julius F. Kögel
- Fachbereich Chemie, Philipps‐Universität Marburg, Hans‐Meerwein‐Straße, 35032 Marburg (Germany), Fax: (+49) 642128‐25711
| | - Xiulan Xie
- Fachbereich Chemie, Philipps‐Universität Marburg, Hans‐Meerwein‐Straße, 35032 Marburg (Germany), Fax: (+49) 642128‐25711
| | - Eduard Baal
- Fachbereich Chemie, Philipps‐Universität Marburg, Hans‐Meerwein‐Straße, 35032 Marburg (Germany), Fax: (+49) 642128‐25711
| | - Donatas Gesevičius
- Fachbereich Chemie, Philipps‐Universität Marburg, Hans‐Meerwein‐Straße, 35032 Marburg (Germany), Fax: (+49) 642128‐25711
| | - Benjamin Oelkers
- Fachbereich Chemie, Philipps‐Universität Marburg, Hans‐Meerwein‐Straße, 35032 Marburg (Germany), Fax: (+49) 642128‐25711
| | - Borislav Kovačević
- Quantum Chemistry Group, Rudjer Bošković Institute, Bijenička c. 54, 10000 Zagreb (Croatia)
| | - Jörg Sundermeyer
- Fachbereich Chemie, Philipps‐Universität Marburg, Hans‐Meerwein‐Straße, 35032 Marburg (Germany), Fax: (+49) 642128‐25711
| |
Collapse
|
27
|
Calvano CD, De Ceglie C, Zambonin CG. Proteomic analysis of complex protein samples by MALDI-TOF mass spectrometry. Methods Mol Biol 2014; 1129:365-380. [PMID: 24648088 DOI: 10.1007/978-1-62703-977-2_27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
MALDI MS has become a technique of considerable impact on many fields, from proteomics to lipidomics, including polymer analysis and, more recently, even low molecular weight analytes due to the introduction of matrix-less ionization techniques (e.g., DIOS) or new matrices such as ionic liquids, proton sponges, and metal nanoparticles. However, protein identification by peptide mass fingerprint (PMF) still remains the main routine application. In the last few years, MALDI MS has played an emerging role in food chemistry especially in detection of food adulterations, characterization of food allergens, and investigation of protein structural modifications, induced by various industrial processes that could be detrimental for food quality and safety. Sample handling and pretreatment can be very different depending on the physical state, liquid or solid, of the analyzed matrices. Here, we describe simple protocols for protein extraction and MALDI MS analysis of liquid (milk) and solid (hazelnuts) samples taken as model. A classic approach based on a preliminary SDS gel electrophoresis separation followed by in-gel digestion and a faster approach based on in-solution digestion of whole samples are described and compared.
Collapse
Affiliation(s)
- Cosima Damiana Calvano
- Dipartimento di Chimica, Università degli Studi di Bari "Aldo Moro", Via Orabona, 4, 70126, Bari, Italy,
| | | | | |
Collapse
|
28
|
Cegłowski M, Jasiecki S, Schroeder G. Laser desorption/ionization mass spectrometric analysis of folic acid, vancomycin and Triton® X-100 on variously functionalized carbon nanotubes. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:2631-2638. [PMID: 24591024 DOI: 10.1002/rcm.6728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/29/2013] [Accepted: 09/02/2013] [Indexed: 06/03/2023]
Abstract
RATIONALE Carbon nanotubes (CNTs) have been ascertained to constitute versatile assisting matrices for laser desorption/ionization mass spectrometric analysis of different molecules. The functionalization thereof can lead to obtaining laser desorption/ionization assisting surfaces that would allow the detection of molecules at lower concentration and produce spectra with a better signal-to-noise ratio. METHODS Pristine, -OH and -COOH functionalized multi-walled CNTs were obtained from commercial suppliers. Gallic or sinapinic acid was attached covalently to the CNT surfaces by forming an ester bond. Folic acid, vancomycin and Triton(®) X-100 were used as analytes to examine properties of these new assisting surfaces. Mass spectrometry analysis was conducted on a matrix-assisted laser desorption/ionization quadrupole time-of-flight (MALDIQTOF) mass spectrometer. RESULTS The functionalization of CNTs was confirmed with Fourier transform infrared (FTIR) spectroscopy. The obtained mass spectra revealed that all the assisting surfaces are capable of transferring energy to the analytes; moreover, the presence of carboxyl groups in the structures of CNTs highly enhances their ionization properties. Nevertheless, the presence of sinapinic acid on CNT surfaces does not increase their properties to absorb pulse laser energy. CONCLUSIONS The presented assisting surfaces are effective in LDI mass analysis of folic acid, vancomycin and Triton(®) X-100. The appropriate functionalization of CNTs can lead to the production of assisting surfaces that can become highly effective in the ionization of particular types of analytes.
Collapse
Affiliation(s)
- Michał Cegłowski
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, Umultowska 89b, 61-614, Poznan, Poland
| | | | | |
Collapse
|
29
|
Calvano CD, Italiano F, Catucci L, Agostiano A, Cataldi TRI, Palmisano F, Trotta M. The lipidome of the photosynthetic bacterium Rhodobacter sphaeroides R26 is affected by cobalt and chromate ions stress. Biometals 2013; 27:65-73. [PMID: 24249151 DOI: 10.1007/s10534-013-9687-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 11/10/2013] [Indexed: 02/07/2023]
Abstract
A detailed characterization of membrane lipids of the photosynthetic bacterium Rhodobacter (R.) sphaeroides was accomplished by thin-layer chromatography coupled with matrix-assisted laser desorption ionization mass spectrometry. Such an approach allowed the identification of the main membrane lipids belonging to different classes, namely cardiolipins (CLs), phosphatidylethanolamines, phosphatidylglycerols (PGs), phosphatidylcholines, and sulfoquinovosyldiacylglycerols (SQDGs). Thus, the lipidomic profile of R. sphaeroides R26 grown in abiotic stressed conditions by exposure to bivalent cobalt cation and chromate oxyanion, was investigated. Compared to bacteria grown under control conditions, significant lipid alterations take place under both stress conditions; cobalt exposure stress results in the relative content increase of CLs and SQDGs, most likely compensating the decrease in PGs content, whereas chromate stress conditions result in the relative content decrease of both PGs and SQDGs, leaving CLs unaltered. For the first time, the response of R. sphaeroides to heavy metals as Co(2+) and CrO4 (2-) is reported and changes in membrane lipid profiles were rationalised.
Collapse
Affiliation(s)
- Cosima Damiana Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126, Bari, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Calvano CD, Monopoli A, Ditaranto N, Palmisano F. 1,8-bis(dimethylamino)naphthalene/9-aminoacridine: a new binary matrix for lipid fingerprinting of intact bacteria by matrix assisted laser desorption ionization mass spectrometry. Anal Chim Acta 2013; 798:56-63. [PMID: 24070484 DOI: 10.1016/j.aca.2013.08.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 10/26/2022]
Abstract
The effectiveness of a novel binary matrix composed of 1,8-bis(dimethylamino)naphthalene (DMAN; proton sponge) and 9-aminoacridine (9AA) for the direct lipid analysis of whole bacterial cells by matrix assisted laser desorption ionization mass spectrometry (MALDI MS) is demonstrated. Deprotonated analyte signals nearly free of matrix-related ions were observed in negative ion mode. The effect of the most important factors (laser energy, pulse voltage, DMAN/9AA ratio, analyte/matrix ratio) was investigated using a Box-Behnken response surface design followed by multi-response optimization in order to simultaneously maximize signal-to-noise (S/N) ratio and resolution. The chemical surface composition of single or mixed matrices was explored by X-ray photoelectron spectroscopy (XPS). Moreover, XPS imaging was used to map the spatial distribution of a model phospholipid in single or binary matrices. The DMAN/9AA binary matrix was then successfully applied to the analysis of intact Gram positive (Lactobacillus sanfranciscensis) or Gram negative (Escherichia coli) microorganisms. About fifty major membrane components (free fatty acids, mono-, di- and tri-glycerides, phospholipids, glycolipids and cardiolipins) were quickly and easily detected over a mass range spanning from ca. 200 to ca. 1600 m/z. Moreover, mass spectra with improved S/N ratio (compared to single matrices), reduced chemical noise and no formation of matrix-clusters were invariably obtained demonstrating the potential of this binary matrix to improve sensitivity.
Collapse
Affiliation(s)
- C D Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona, 4, 70126 Bari, Italy.
| | | | | | | |
Collapse
|
31
|
Sandrin TR, Goldstein JE, Schumaker S. MALDI TOF MS profiling of bacteria at the strain level: a review. MASS SPECTROMETRY REVIEWS 2013; 32:188-217. [PMID: 22996584 DOI: 10.1002/mas.21359] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/18/2012] [Accepted: 06/18/2012] [Indexed: 05/16/2023]
Abstract
Since the advent of the use of matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF MS) as a tool for microbial characterization, efforts to increase the taxonomic resolution of the approach have been made. The rapidity and efficacy of the approach have suggested applications in counter-bioterrorism, prevention of food contamination, and monitoring the spread of antibiotic-resistant bacteria. Strain-level resolution has been reported with diverse bacteria, using library-based and bioinformatics-enabled approaches. Three types of characterization at the strain level have been reported: strain categorization, strain differentiation, and strain identification. Efforts to enhance the library-based approach have involved sample pre-treatment and data reduction strategies. Bioinformatics approaches have leveraged the ever-increasing amount of publicly available genomic and proteomic data to attain strain-level characterization. Bioinformatics-enabled strategies have facilitated strain characterization via intact biomarker identification, bottom-up, and top-down approaches. Rigorous quantitative and advanced statistical analyses have fostered success at the strain level with both approaches. Library-based approaches can be limited by effects of sample preparation and culture conditions on reproducibility, whereas bioinformatics-enabled approaches are typically limited to bacteria, for which genetic and/or proteomic data are available. Biological molecules other than proteins produced in strain-specific manners, including lipids and lipopeptides, might represent other avenues by which strain-level resolution might be attained. Immunological and lectin-based chemistries have shown promise to enhance sensitivity and specificity. Whereas the limits of the taxonomic resolution of MALDI TOF MS profiling of bacteria appears bacterium-specific, recent data suggest that these limits might not yet have been reached.
Collapse
Affiliation(s)
- Todd R Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85069, USA.
| | | | | |
Collapse
|
32
|
Surface analysis of lipids by mass spectrometry: more than just imaging. Prog Lipid Res 2013; 52:329-53. [PMID: 23623802 DOI: 10.1016/j.plipres.2013.04.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 03/19/2013] [Accepted: 04/12/2013] [Indexed: 11/22/2022]
Abstract
Mass spectrometry is now an indispensable tool for lipid analysis and is arguably the driving force in the renaissance of lipid research. In its various forms, mass spectrometry is uniquely capable of resolving the extensive compositional and structural diversity of lipids in biological systems. Furthermore, it provides the ability to accurately quantify molecular-level changes in lipid populations associated with changes in metabolism and environment; bringing lipid science to the "omics" age. The recent explosion of mass spectrometry-based surface analysis techniques is fuelling further expansion of the lipidomics field. This is evidenced by the numerous papers published on the subject of mass spectrometric imaging of lipids in recent years. While imaging mass spectrometry provides new and exciting possibilities, it is but one of the many opportunities direct surface analysis offers the lipid researcher. In this review we describe the current state-of-the-art in the direct surface analysis of lipids with a focus on tissue sections, intact cells and thin-layer chromatography substrates. The suitability of these different approaches towards analysis of the major lipid classes along with their current and potential applications in the field of lipid analysis are evaluated.
Collapse
|
33
|
Calvano CD, Monopoli A, Loizzo P, Faccia M, Zambonin C. Proteomic approach based on MALDI-TOF MS to detect powdered milk in fresh cow's milk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:1609-1617. [PMID: 22931122 DOI: 10.1021/jf302999s] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Milk and cheese are expensive foodstuffs, and their consumption is spread among the population because of their high nutritional value; for this reason they are often subjected to adulterations. Among the common illegal practices, the addition of powdered derivatives seems very difficult to detect because the adulterant materials have almost the same chemical composition of liquid milk. However, the high temperatures (180-200 °C) used for milk powder production could imply the occurrence of some protein modifications (e.g., glycation, lactosylation, oxidation, deamidation, dehydration). The modified proteins or peptides could then be used as markers for the presence of powdered milk. In this work, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was employed to analyze tryptic digests relevant to samples of raw liquid (without heat treatment), commercial liquid, and powdered cow's milk. Samples were subjected to two-dimensional gel electrophoresis (2-DE); differences among liquid and powder milk were detected at this stage and eventually confirmed by MALDI analysis of the in gel digested proteins. Some diagnostic peptides of powdered milk, attributed to modified whey proteins and/or caseins, were identified. Then, a faster procedure was optimized, consisting of the separation of caseins from milk whey and the subsequent in-solution digestion of the two fractions, with the advantage of obtaining almost the same information in a limited amount of time. Finally, analyses were carried out with the fast procedure on liquid milk samples adulterated with powdered milk at different percentages, and diagnostic peptides were detected down to 1% of adulteration level.
Collapse
|
34
|
Braga PAC, Tata A, Gonçalves dos Santos V, Barreiro JR, Schwab NV, Veiga dos Santos M, Eberlin MN, Ferreira CR. Bacterial identification: from the agar plate to the mass spectrometer. RSC Adv 2013. [DOI: 10.1039/c2ra22063f] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
35
|
Eibisch M, Süss R, Schiller J. Time-dependent intensity changes of free fatty acids detected by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry in the presence of 1,8-bis-(dimethylamino)naphthalene--a cautionary note. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:1573-1576. [PMID: 22638975 DOI: 10.1002/rcm.6260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
36
|
Monopoli A, Cotugno P, Cortese M, Calvano CD, Ciminale F, Nacci A. Selective N-Alkylation of Arylamines with Alkyl Chloride in Ionic Liquids: Scope and Applications. European J Org Chem 2012. [DOI: 10.1002/ejoc.201200202] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
37
|
Improved detection of phosphopeptides by negative ion matrix-assisted laser desorption/ionization mass spectrometry using a proton sponge co-matrix. Anal Chim Acta 2012; 711:77-82. [DOI: 10.1016/j.aca.2011.10.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/01/2011] [Accepted: 10/27/2011] [Indexed: 01/25/2023]
|