1
|
Acharya N, Jha SK. Dry Molten Globule-Like Intermediates in Protein Folding, Function, and Disease. J Phys Chem B 2022; 126:8614-8622. [PMID: 36286394 DOI: 10.1021/acs.jpcb.2c04991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The performance of a protein depends on its correct folding to the final functional native form. Hence, understanding the process of protein folding has remained an important field of research for the scientific community for the past five decades. Two important intermediate states, namely, wet molten globule (WMG) and dry molten globule (DMG), have emerged as critical milestones during protein folding-unfolding reactions. While much has been discussed about WMGs as a common unfolding intermediate, the evidence for DMGs has remained elusive owing to their near-native features, which makes them difficult to probe using global structural probes. This Review puts together the available literature and new evidence on DMGs to give a broader perspective on the universality of DMGs and discuss their significance in protein folding, function, and disease.
Collapse
Affiliation(s)
- Nirbhik Acharya
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Santosh Kumar Jha
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Bystranowska D, Skorupska A, Sołtys K, Padjasek M, Krężel A, Żak A, Kaus-Drobek M, Taube M, Kozak M, Ożyhar A. Nucleobindin-2 consists of two structural components: The Zn 2+-sensitive N-terminal half, consisting of nesfatin-1 and -2, and the Ca 2+-sensitive C-terminal half, consisting of nesfatin-3. Comput Struct Biotechnol J 2021; 19:4300-4318. [PMID: 34429849 PMCID: PMC8361300 DOI: 10.1016/j.csbj.2021.07.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/01/2022] Open
Abstract
Nucleobindin-2 (Nucb2) is a protein that has been suggested to play roles in a variety of biological processes. Nucb2 contains two Ca2+/Mg2+-binding EF-hand domains separated by an acidic amino acid residue-rich region and a leucine zipper. All of these domains are located within the C-terminal half of the protein. At the N-terminal half, Nucb2 also possesses a putative Zn2+-binding motif. In our recent studies, we observed that Nucb2 underwent Ca2+-dependent compaction and formed a mosaic-like structure consisting of intertwined disordered and ordered regions at its C-terminal half. The aim of this study was to investigate the impact of two other potential ligands: Mg2+, which possesses chemical properties similar to those of Ca2+, and Zn2+, for which a putative binding motif was identified. In this study, we demonstrated that the binding of Mg2+ led to oligomerization state changes with no significant secondary or tertiary structural alterations of Nucb2. In contrast, Zn2+ binding had a more pronounced effect on the structure of Nucb2, leading to the local destabilization of its N-terminal half while also inducing changes within its C-terminal half. These structural rearrangements resulted in the oligomerization and/or aggregation of Nucb2 molecules. Taken together, the results of our previous and current research help to elucidate the structure of the Nucb2, which can be divided into two parts: the Zn2+-sensitive N-terminal half (consisting of nesfatin-1 and -2) and the Ca2+-sensitive C-terminal half (consisting of nesfatin-3). These results may also help to open a new discussion regarding the diverse roles that metal cations play in regulating the structure of Nucb2 and the various physiological functions of this protein.
Collapse
Affiliation(s)
- Dominika Bystranowska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Anna Skorupska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Katarzyna Sołtys
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Michał Padjasek
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383 Wrocław, Poland
| | - Andrzej Żak
- Faculty of Mechanical Engineering, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Magdalena Kaus-Drobek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Michał Taube
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Czerwone Maki 98, 30-392 Kraków, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
3
|
Choi RH, Kim HT. Analysis of oligomeric complexes of the amyloid-forming FYLLYY peptide by collision-induced dissociation with electrospray ionization mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2020; 26:361-368. [PMID: 32915641 DOI: 10.1177/1469066720958373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The monomeric and oligomeric structures of the "FYLLYY" β2 microglobulin (β2m) active sequence, formed in (DMSO/CH3CN) solution, were investigated using electrospray ionization (ESI) mass spectrometry (MS) and tandem mass spectrometry (MS/MS). Dissociation of dimer and trimer ions was investigated by tandem mass spectrometry using collision induced dissociation (CID). The covalent bond fragmentation patterns were observed in the 21+ and 32+ MS/MS spectra (21+ = [dimer+H]1+ and 32+ = [trimer + 2H]2+). A π-π stacking geometry for the FYLLYY 21+ complex and partial parallel β-sheet geometry for the 32+ complex are proposed to be stable structures. The observed covalent bond fragment ions in the MS/MS spectra of the 32+ complex are considered to have originated from the partial parallel β-sheet moiety. The FYLLYY → AALLGY (or FYLLAA) substituted sequence was also investigated by CID-MS/MS. Our MS/MS analysis suggests that the π-π stacking interaction structures are important in dimer binding rather than the structures of a complete parallel or anti-parallel β-sheet 21+ complex.
Collapse
Affiliation(s)
- Ryu Ho Choi
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, Republic of Korea
| | - Ho-Tae Kim
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, Republic of Korea
| |
Collapse
|
4
|
Hu J, Zheng Q. Applications of Mass Spectrometry in the Onset of Amyloid Fibril Formation: Focus on the Analysis of Early-Stage Oligomers. Front Chem 2020; 8:324. [PMID: 32432078 PMCID: PMC7215083 DOI: 10.3389/fchem.2020.00324] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/30/2020] [Indexed: 02/05/2023] Open
Abstract
Amyloid fibril formation is a hallmark of diverse neurodegenerative and metabolic diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and type 2 diabetes mellitus (T2DM). Conventional diagnosis is based on the appearance of fibrils or plaques, while neglects the role of early-stage oligomers in the disease progression. Recent studies have uncovered that it is the early-stage oligomer, rather than the mature fibril, that greatly contributes cytotoxicity. The formation of oligomers involves complicate structural conversions and it is essential to investigate their conformational changes for a better understanding of aggregation mechanism. The coexistence of soluble early-stage oligomers, intermediates, and pre-fibril species makes it difficult to be differentiate by morphological methods, and only average structural information is provided as they lack the ability of separation. Therefore, mass spectrometry (MS) becomes an alternative technique that presents new and complementary insights into the onset of amyloid fibrils. This review highlights the hotspots and important achievements by MS in the field of amyloid formation mechanism, including the direct detection and differentiation of soluble oligomers (native MS), unambiguous identification of interacted sites involved in the onset of aggregation [hydrogen/deuterium exchange (HDX) and chemical cross-linking (CX)], and conformational switch that leads to fibrilization [collision cross section (CCS) regularity by ion mobility (IM)].
Collapse
Affiliation(s)
- Jiaojiao Hu
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qiuling Zheng
- Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
Narang SS, Shuaib S, Goyal D, Goyal B. In silico-guided identification of potential inhibitors against β2m aggregation in dialysis-related amyloidosis. J Biomol Struct Dyn 2019; 38:3927-3941. [DOI: 10.1080/07391102.2019.1668852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Simranjeet Singh Narang
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Suniba Shuaib
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Deepti Goyal
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, India
| | - Bhupesh Goyal
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, Punjab, India
| |
Collapse
|
6
|
Toxines urémiques de moyen poids moléculaire : un véritable regain d’intérêt. Nephrol Ther 2019; 15:82-90. [DOI: 10.1016/j.nephro.2018.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/02/2018] [Indexed: 01/20/2023]
|
7
|
Cornwell O, Radford SE, Ashcroft AE, Ault JR. Comparing Hydrogen Deuterium Exchange and Fast Photochemical Oxidation of Proteins: a Structural Characterisation of Wild-Type and ΔN6 β 2-Microglobulin. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:2413-2426. [PMID: 30267362 PMCID: PMC6276068 DOI: 10.1007/s13361-018-2067-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 05/23/2023]
Abstract
Hydrogen deuterium exchange (HDX) coupled to mass spectrometry (MS) is a well-established technique employed in the field of structural MS to probe the solvent accessibility, dynamics and hydrogen bonding of backbone amides in proteins. By contrast, fast photochemical oxidation of proteins (FPOP) uses hydroxyl radicals, liberated from the photolysis of hydrogen peroxide, to covalently label solvent accessible amino acid side chains on the microsecond-millisecond timescale. Here, we use these two techniques to study the structural and dynamical differences between the protein β2-microglobulin (β2m) and its amyloidogenic truncation variant, ΔN6. We show that HDX and FPOP highlight structural/dynamical differences in regions of the proteins, localised to the region surrounding the N-terminal truncation. Further, we demonstrate that, with carefully optimised LC-MS conditions, FPOP data can probe solvent accessibility at the sub-amino acid level, and that these data can be interpreted meaningfully to gain more detailed understanding of the local environment and orientation of the side chains in protein structures. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Owen Cornwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Alison E Ashcroft
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - James R Ault
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
8
|
Vanholder R, Pletinck A, Schepers E, Glorieux G. Biochemical and Clinical Impact of Organic Uremic Retention Solutes: A Comprehensive Update. Toxins (Basel) 2018; 10:toxins10010033. [PMID: 29316724 PMCID: PMC5793120 DOI: 10.3390/toxins10010033] [Citation(s) in RCA: 219] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/21/2017] [Accepted: 12/23/2017] [Indexed: 02/07/2023] Open
Abstract
In this narrative review, the biological/biochemical impact (toxicity) of a large array of known individual uremic retention solutes and groups of solutes is summarized. We classified these compounds along their physico-chemical characteristics as small water-soluble compounds or groups, protein bound compounds and middle molecules. All but one solute (glomerulopressin) affected at least one mechanism with the potential to contribute to the uremic syndrome. In general, several mechanisms were influenced for each individual solute or group of solutes, with some impacting up to 7 different biological systems of the 11 considered. The inflammatory, cardio-vascular and fibrogenic systems were those most frequently affected and they are one by one major actors in the high morbidity and mortality of CKD but also the mechanisms that have most frequently been studied. A scoring system was built with the intention to classify the reviewed compounds according to the experimental evidence of their toxicity (number of systems affected) and overall experimental and clinical evidence. Among the highest globally scoring solutes were 3 small water-soluble compounds [asymmetric dimethylarginine (ADMA); trimethylamine-N-oxide (TMAO); uric acid], 6 protein bound compounds or groups of protein bound compounds [advanced glycation end products (AGEs); p-cresyl sulfate; indoxyl sulfate; indole acetic acid; the kynurenines; phenyl acetic acid;] and 3 middle molecules [β2-microglobulin; ghrelin; parathyroid hormone). In general, more experimental data were provided for the protein bound molecules but for almost half of them clinical evidence was missing in spite of robust experimental data. The picture emanating is one of a complex disorder, where multiple factors contribute to a multisystem complication profile, so that it seems of not much use to pursue a decrease of concentration of a single compound.
Collapse
Affiliation(s)
- Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Anneleen Pletinck
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Eva Schepers
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, De Pintelaan 185, 9000 Ghent, Belgium.
| |
Collapse
|
9
|
Fukasawa K, Higashimoto Y, Ando Y, Motomiya Y. Selection of DNA Aptamer That Blocks the Fibrillogenesis of a Proteolytic Amyloidogenic Fragment of β 2 m. Ther Apher Dial 2017; 22:61-66. [PMID: 28960840 DOI: 10.1111/1744-9987.12591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/22/2017] [Accepted: 06/14/2017] [Indexed: 01/10/2023]
Abstract
Dialysis-related amyloidosis (DRA) is a severe complication of hemodialysis that results in progressive destruction of bones and joints. Elevated concentrations of the β2 -microglobulin (β2 m) level in the serum of subjects on hemodialysis promote the formation of amyloid fibrils in osteoarticular tissues. β2 m lacking the N-terminal six residues of the mature protein (ΔN6β2 m) constitutes 25-30% of β2 m in ex vivo DRA amyloid. Unlike full-length wild-type β2 m, ΔN6β2 m forms amyloid fibrils at neutral pH in vitro. However, the role of ΔN6β2 m in DRA is, at present, poorly understood. In the present study, we screened novel phosphorothioate-modified aptamers directed against ΔN6β2 m using combinatorial chemistry in vitro. We identified 11 ΔN6β2 m aptamers; among the identified aptamers, clone #2, #8, and #10 aptamers had higher binding affinity to ΔN6β2 m than the others. Biolayer interferometry analysis revealed that KD values of clone #2, #8, and #10 aptamers were 56, 23, and 44 nM, respectively. Furthermore, the clone #8 aptamer inhibited fibril formation in a dose-dependent manner, as assessed by Thioflavin T fluorescence assay. Fibrils formed from ΔN6β2 m bind to Congo red, displaying changes in the absorbance spectrum of the dye characteristic of binding to amyloid fibrils, which was completely blocked by treatment with clone #8 aptamer. These results suggest the potential of ΔN6β2 m aptamers as tools for elucidating co-assembly mechanisms in amyloid formation.
Collapse
Affiliation(s)
- Kanon Fukasawa
- Department of Chemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yuichiro Higashimoto
- Department of Chemistry, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Yukio Ando
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Honjo, Kumamoto, Japan
| | | |
Collapse
|
10
|
Loureiro RJS, Vila-Viçosa D, Machuqueiro M, Shakhnovich EI, Faísca PFN. A tale of two tails: The importance of unstructured termini in the aggregation pathway of β2-microglobulin. Proteins 2017; 85:2045-2057. [DOI: 10.1002/prot.25358] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/13/2017] [Accepted: 07/22/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Rui J. S. Loureiro
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa; Lisboa Portugal
| | - Diogo Vila-Viçosa
- Centro de Química e Bioquímica; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa; Lisboa Portugal
| | - Miguel Machuqueiro
- Centro de Química e Bioquímica; Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa; Lisboa Portugal
| | - Eugene I. Shakhnovich
- Department of Chemistry and Chemical Biology; Harvard University; Cambridge Massachusetts
| | - Patricia F. N. Faísca
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa; Lisboa Portugal
- Departamento de Física; Faculdade de Ciências, Universidade de Lisboa; Lisboa Portugal
| |
Collapse
|
11
|
Dautant A, Meyer P, Georgescauld F. Hydrogen/Deuterium Exchange Mass Spectrometry Reveals Mechanistic Details of Activation of Nucleoside Diphosphate Kinases by Oligomerization. Biochemistry 2017; 56:2886-2896. [DOI: 10.1021/acs.biochem.7b00282] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Alain Dautant
- Université
de Bordeaux, CNRS, Institut de Biochimie et Génétique
Cellulaires, UMR 5095, Bordeaux, France
| | - Philippe Meyer
- Sorbonne Universités,
UPMC Univ. Paris 06, CNRS, Laboratoire de Biologie Moléculaire
et Cellulaire des Eucaryotes, UMR 8226, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Florian Georgescauld
- Sorbonne Universités,
UPMC Univ. Paris 06, CNRS, Laboratoire de Biologie Moléculaire
et Cellulaire des Eucaryotes, UMR 8226, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
12
|
Wang L, Chance MR. Protein Footprinting Comes of Age: Mass Spectrometry for Biophysical Structure Assessment. Mol Cell Proteomics 2017; 16:706-716. [PMID: 28275051 DOI: 10.1074/mcp.o116.064386] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/06/2017] [Indexed: 12/17/2022] Open
Abstract
Protein footprinting mediated by mass spectrometry has evolved over the last 30 years from proof of concept to commonplace biophysics tool, with unique capabilities for assessing structure and dynamics of purified proteins in physiological states in solution. This review outlines the history and current capabilities of two major methods of protein footprinting: reversible hydrogen-deuterium exchange (HDX) and hydroxyl radical footprinting (HRF), an irreversible covalent labeling approach. Technological advances in both approaches now permit high-resolution assessments of protein structure including secondary and tertiary structure stability mediated by backbone interactions (measured via HDX) and solvent accessibility of side chains (measured via HRF). Applications across many academic fields and in biotechnology drug development are illustrated including: detection of protein interfaces, identification of ligand/drug binding sites, and monitoring dynamics of protein conformational changes along with future prospects for advancement of protein footprinting in structural biology and biophysics research.
Collapse
Affiliation(s)
- Liwen Wang
- From the ‡Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Mark R Chance
- From the ‡Center for Proteomics and Bioinformatics, Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
13
|
Borotto NB, Zhang Z, Dong J, Burant B, Vachet RW. Increased β-Sheet Dynamics and D-E Loop Repositioning Are Necessary for Cu(II)-Induced Amyloid Formation by β-2-Microglobulin. Biochemistry 2017; 56:1095-1104. [PMID: 28168880 DOI: 10.1021/acs.biochem.6b01198] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
β-2-Microglobulin (β2m) forms amyloid fibrils in the joints of patients undergoing dialysis treatment as a result of kidney failure. One of the ways in which β2m can be induced to form amyloid fibrils in vitro is via incubation with stoichiometric amounts of Cu(II). To better understand the structural changes caused by Cu(II) binding that allow β2m to form amyloid fibrils, we compared the effect of Ni(II) and Zn(II) binding, which are two similarly sized divalent metal ions that do not induce β2m amyloid formation. Using hydrogen/deuterium exchange mass spectrometry (HDX/MS) and covalent labeling MS, we find that Ni(II) has little effect on β2m structure, despite binding in the same region of the protein as Cu(II). This observation indicates that subtle differences in the organization of residues around Cu(II) cause distant changes that are necessary for oligomerization and eventual amyloid formation. One key difference that we find is that only Cu(II), not Ni(II) or Zn(II), is able to cause the cis-trans isomerization of Pro32 that is an important conformational switch that initiates β2m amyloid formation. By comparing HDX/MS data from the three metal-β2m complexes, we also discover that increased dynamics in the β-sheet formed by the A, B, D, and E β strands of the protein and repositioning of residues in the D-E loop are necessary aspects of β2m forming an amyloid-competent dimer. Altogether, our results reveal new structural insights into the unique effect of Cu(II) in the metal-induced amyloid formation of β2m.
Collapse
Affiliation(s)
- Nicholas B Borotto
- Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Zhe Zhang
- Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Jia Dong
- Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Brittney Burant
- Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| |
Collapse
|
14
|
Dagbay KB, Bolik-Coulon N, Savinov SN, Hardy JA. Caspase-6 Undergoes a Distinct Helix-Strand Interconversion upon Substrate Binding. J Biol Chem 2017; 292:4885-4897. [PMID: 28154009 DOI: 10.1074/jbc.m116.773499] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/01/2017] [Indexed: 12/22/2022] Open
Abstract
Caspases are cysteine aspartate proteases that are major players in key cellular processes, including apoptosis and inflammation. Specifically, caspase-6 has also been implicated in playing a unique and critical role in neurodegeneration; however, structural similarities between caspase-6 and other caspase active sites have hampered precise targeting of caspase-6. All caspases can exist in a canonical conformation, in which the substrate binds atop a β-strand platform in the 130's region. This caspase-6 region can also adopt a helical conformation that has not been seen in any other caspases. Understanding the dynamics and interconversion between the helical and strand conformations in caspase-6 is critical to fully assess its unique function and regulation. Here, hydrogen/deuterium exchange mass spectrometry indicated that caspase-6 is inherently and dramatically more conformationally dynamic than closely related caspase-7. In contrast to caspase-7, which rests constitutively in the strand conformation before and after substrate binding, the hydrogen/deuterium exchange data in the L2' and 130's regions suggested that before substrate binding, caspase-6 exists in a dynamic equilibrium between the helix and strand conformations. Caspase-6 transitions exclusively to the canonical strand conformation only upon substrate binding. Glu-135, which showed noticeably different calculated pK a values in the helix and strand conformations, appears to play a key role in the interconversion between the helix and strand conformations. Because caspase-6 has roles in several neurodegenerative diseases, exploiting the unique structural features and conformational changes identified here may provide new avenues for regulating specific caspase-6 functions for therapeutic purposes.
Collapse
Affiliation(s)
| | | | - Sergey N Savinov
- Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | | |
Collapse
|
15
|
P C, R R. A systematic molecular dynamics approach to the structural characterization of amyloid aggregation propensity of β2-microglobulin mutant D76N. MOLECULAR BIOSYSTEMS 2016; 12:850-9. [DOI: 10.1039/c5mb00759c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Beta-2 microglobulin (β2m) is an amyloidogenic protein belonging to the immunoglobulin superfamily, responsible for the dialysis-related amyloidosis (DRA).
Collapse
Affiliation(s)
- Chandrasekaran P
- Bioinformatics Division
- School of Biosciences and Technology
- VIT University
- Vellore 632 014
- India
| | - Rajasekaran R
- Bioinformatics Division
- School of Biosciences and Technology
- VIT University
- Vellore 632 014
- India
| |
Collapse
|
16
|
Zambrano R, Jamroz M, Szczasiuk A, Pujols J, Kmiecik S, Ventura S. AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures. Nucleic Acids Res 2015; 43:W306-13. [PMID: 25883144 PMCID: PMC4489226 DOI: 10.1093/nar/gkv359] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/07/2015] [Indexed: 11/14/2022] Open
Abstract
Protein aggregation underlies an increasing number of disorders and constitutes a major bottleneck in the development of therapeutic proteins. Our present understanding on the molecular determinants of protein aggregation has crystalized in a series of predictive algorithms to identify aggregation-prone sites. A majority of these methods rely only on sequence. Therefore, they find difficulties to predict the aggregation properties of folded globular proteins, where aggregation-prone sites are often not contiguous in sequence or buried inside the native structure. The AGGRESCAN3D (A3D) server overcomes these limitations by taking into account the protein structure and the experimental aggregation propensity scale from the well-established AGGRESCAN method. Using the A3D server, the identified aggregation-prone residues can be virtually mutated to design variants with increased solubility, or to test the impact of pathogenic mutations. Additionally, A3D server enables to take into account the dynamic fluctuations of protein structure in solution, which may influence aggregation propensity. This is possible in A3D Dynamic Mode that exploits the CABS-flex approach for the fast simulations of flexibility of globular proteins. The A3D server can be accessed at http://biocomp.chem.uw.edu.pl/A3D/.
Collapse
Affiliation(s)
- Rafael Zambrano
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Michal Jamroz
- University of Warsaw, Faculty of Chemistry, Pasteura 1, Warsaw, Poland
| | - Agata Szczasiuk
- University of Warsaw, Faculty of Chemistry, Pasteura 1, Warsaw, Poland
| | - Jordi Pujols
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| | - Sebastian Kmiecik
- University of Warsaw, Faculty of Chemistry, Pasteura 1, Warsaw, Poland
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, 08193, Spain
| |
Collapse
|
17
|
Affiliation(s)
- Gregory
F. Pirrone
- Department of Chemistry and
Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 United States
| | - Roxana E. Iacob
- Department of Chemistry and
Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 United States
| | - John R. Engen
- Department of Chemistry and
Chemical Biology, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 United States
| |
Collapse
|
18
|
Salisbury JP, Liu Q, Agar JN. QUDeX-MS: hydrogen/deuterium exchange calculation for mass spectra with resolved isotopic fine structure. BMC Bioinformatics 2014; 15:403. [PMID: 25495703 PMCID: PMC4274694 DOI: 10.1186/s12859-014-0403-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 12/01/2014] [Indexed: 12/25/2022] Open
Abstract
Background Hydrogen/deuterium exchange (HDX) coupled to mass spectrometry permits analysis of structure, dynamics, and molecular interactions of proteins. HDX mass spectrometry is confounded by deuterium exchange-associated peaks overlapping with peaks of heavy, natural abundance isotopes, such as carbon-13. Recent studies demonstrated that high-performance mass spectrometers could resolve isotopic fine structure and eliminate this peak overlap, allowing direct detection and quantification of deuterium incorporation. Results Here, we present a graphical tool that allows for a rapid and automated estimation of deuterium incorporation from a spectrum with isotopic fine structure. Given a peptide sequence (or elemental formula) and charge state, the mass-to-charge ratios of deuterium-associated peaks of the specified ion is determined. Intensities of peaks in an experimental mass spectrum within bins corresponding to these values are used to determine the distribution of deuterium incorporated. A theoretical spectrum can then be calculated based on the estimated distribution of deuterium exchange to confirm interpretation of the spectrum. Deuterium incorporation can also be detected for ion signals without a priori specification of an elemental formula, permitting detection of exchange in complex samples of unidentified material such as natural organic matter. A tool is also incorporated into QUDeX-MS to help in assigning ion signals from peptides arising from enzymatic digestion of proteins. MATLAB-deployable and standalone versions are available for academic use at qudex-ms.sourceforge.net and agarlabs.com. Conclusion Isotopic fine structure HDX-MS offers the potential to increase sequence coverage of proteins being analyzed through mass accuracy and deconvolution of overlapping ion signals. As previously demonstrated, however, the data analysis workflow for HDX-MS data with resolved isotopic fine structure is distinct. QUDeX-MS we hope will aid in the adoption of isotopic fine structure HDX-MS by providing an intuitive workflow and interface for data analysis.
Collapse
Affiliation(s)
- Joseph P Salisbury
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences and Barnett Institute of Chemical and Biological Analysis, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.
| | - Qian Liu
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences and Barnett Institute of Chemical and Biological Analysis, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.
| | - Jeffrey N Agar
- Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences and Barnett Institute of Chemical and Biological Analysis, Northeastern University, 360 Huntington Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
19
|
Sarell CJ, Karamanos TK, White SJ, Bunka DHJ, Kalverda AP, Thompson GS, Barker AM, Stockley PG, Radford SE. Distinguishing closely related amyloid precursors using an RNA aptamer. J Biol Chem 2014; 289:26859-26871. [PMID: 25100729 PMCID: PMC4175327 DOI: 10.1074/jbc.m114.595066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although amyloid fibrils assembled in vitro commonly involve a single protein, fibrils formed in vivo can contain multiple protein sequences. The amyloidogenic protein human β2-microglobulin (hβ2m) can co-polymerize with its N-terminally truncated variant (ΔN6) in vitro to form hetero-polymeric fibrils that differ from their homo-polymeric counterparts. Discrimination between the different assembly precursors, for example by binding of a biomolecule to one species in a mixture of conformers, offers an opportunity to alter the course of co-assembly and the properties of the fibrils formed. Here, using hβ2m and its amyloidogenic counterpart, ΔΝ6, we describe selection of a 2'F-modified RNA aptamer able to distinguish between these very similar proteins. SELEX with a N30 RNA pool yielded an aptamer (B6) that binds hβ2m with an EC50 of ∼200 nM. NMR spectroscopy was used to assign the (1)H-(15)N HSQC spectrum of the B6-hβ2m complex, revealing that the aptamer binds to the face of hβ2m containing the A, B, E, and D β-strands. In contrast, binding of B6 to ΔN6 is weak and less specific. Kinetic analysis of the effect of B6 on co-polymerization of hβ2m and ΔN6 revealed that the aptamer alters the kinetics of co-polymerization of the two proteins. The results reveal the potential of RNA aptamers as tools for elucidating the mechanisms of co-assembly in amyloid formation and as reagents able to discriminate between very similar protein conformers with different amyloid propensity.
Collapse
Affiliation(s)
- Claire J Sarell
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Theodoros K Karamanos
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Simon J White
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - David H J Bunka
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Arnout P Kalverda
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Gary S Thompson
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Amy M Barker
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
20
|
Kumar S, Sharma P, Arora K, Raje M, Guptasarma P. Calcium binding to beta-2-microglobulin at physiological pH drives the occurrence of conformational changes which cause the protein to precipitate into amorphous forms that subsequently transform into amyloid aggregates. PLoS One 2014; 9:e95725. [PMID: 24755626 PMCID: PMC3995793 DOI: 10.1371/journal.pone.0095725] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/30/2014] [Indexed: 11/17/2022] Open
Abstract
Using spectroscopic, calorimetric and microscopic methods, we demonstrate that calcium binds to beta-2-microglobulin (β2m) under physiological conditions of pH and ionic strength, in biological buffers, causing a conformational change associated with the binding of up to four calcium atoms per β2m molecule, with a marked transformation of some random coil structure into beta sheet structure, and culminating in the aggregation of the protein at physiological (serum) concentrations of calcium and β2m. We draw attention to the fact that the sequence of β2m contains several potential calcium-binding motifs of the DXD and DXDXD (or DXEXD) varieties. We establish (a) that the microscopic aggregation seen at physiological concentrations of β2m and calcium turns into actual turbidity and visible precipitation at higher concentrations of protein and β2m, (b) that this initial aggregation/precipitation leads to the formation of amorphous aggregates, (c) that the formation of the amorphous aggregates can be partially reversed through the addition of the divalent ion chelating agent, EDTA, and (d) that upon incubation for a few weeks, the amorphous aggregates appear to support the formation of amyloid aggregates that bind to the dye, thioflavin T (ThT), resulting in increase in the dye's fluorescence. We speculate that β2m exists in the form of microscopic aggregates in vivo and that these don't progress to form larger amyloid aggregates because protein concentrations remain low under normal conditions of kidney function and β2m degradation. However, when kidney function is compromised and especially when dialysis is performed, β2m concentrations probably transiently rise to yield large aggregates that deposit in bone joints and transform into amyloids during dialysis related amyloidosis.
Collapse
Affiliation(s)
- Sukhdeep Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Prerna Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India; Council of Scientific and Industrial Research, Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Kanika Arora
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Manoj Raje
- Council of Scientific and Industrial Research, Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Purnananda Guptasarma
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
21
|
Chmielewski M, Cohen G, Wiecek A, Jesús Carrero J. The peptidic middle molecules: is molecular weight doing the trick? Semin Nephrol 2014; 34:118-34. [PMID: 24780468 DOI: 10.1016/j.semnephrol.2014.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chronic kidney disease (CKD) is characterized by a gradual endogenous intoxication caused by the progressive accumulation of bioactive compounds that in normal conditions would be excreted and/or metabolized by the kidney. Uremic toxicity now is understood as one of the potential causes for the excess of cardiovascular disease and mortality observed in CKD. An important family of uremic toxins is that of the peptidic middle molecules, with a molecular weight ranging between 500 and 60,000 Da, which makes them, as a consequence, difficult to remove in the process of dialysis unless the dialyzer pore size is large enough. This review provides an overview of the main and best-characterized peptidic middle molecules and their role as potential culprits of the cardiometabolic complications inherent to CKD patients.
Collapse
Affiliation(s)
- Michal Chmielewski
- Department of Nephrology, Transplantology and Internal Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Gerald Cohen
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andrzej Wiecek
- Department of Nephrology, Endocrinology and Metabolic Diseases, Medical University of Silesia, Katowice, Poland
| | - Juan Jesús Carrero
- Division of Nephrology and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
22
|
Assessing the effect of loop mutations in the folding space of β2-microglobulin with molecular dynamics simulations. Int J Mol Sci 2013; 14:17256-78. [PMID: 23975166 PMCID: PMC3794727 DOI: 10.3390/ijms140917256] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/27/2013] [Accepted: 07/30/2013] [Indexed: 12/15/2022] Open
Abstract
We use molecular dynamics simulations of a full atomistic Gō model to explore the impact of selected DE-loop mutations (D59P and W60C) on the folding space of protein human β2-microglobulin (Hβ2m), the causing agent of dialysis-related amyloidosis, a conformational disorder characterized by the deposition of insoluble amyloid fibrils in the osteoarticular system. Our simulations replicate the effect of mutations on the thermal stability that is observed in experiments in vitro. Furthermore, they predict the population of a partially folded state, with 60% of native internal free energy, which is akin to a molten globule. In the intermediate state, the solvent accessible surface area increases up to 40 times relative to the native state in 38% of the hydrophobic core residues, indicating that the identified species has aggregation potential. The intermediate state preserves the disulfide bond established between residue Cys25 and residue Cys80, which helps maintain the integrity of the core region, and is characterized by having two unstructured termini. The movements of the termini dominate the essential modes of the intermediate state, and exhibit the largest displacements in the D59P mutant, which is the most aggregation prone variant. PROPKA predictions of pKa suggest that the population of the intermediate state may be enhanced at acidic pH explaining the larger amyloidogenic potential observed in vitro at low pH for the WT protein and mutant forms.
Collapse
|
23
|
Manikwar P, Majumdar R, Hickey JM, Thakkar SV, Samra HS, Sathish HA, Bishop SM, Middaugh CR, Weis DD, Volkin DB. Correlating Excipient Effects on Conformational and Storage Stability of an IgG1 Monoclonal Antibody with Local Dynamics as Measured by Hydrogen/Deuterium-Exchange Mass Spectrometry. J Pharm Sci 2013; 102:2136-51. [DOI: 10.1002/jps.23543] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 03/18/2013] [Indexed: 12/23/2022]
|
24
|
Sarell CJ, Woods LA, Su Y, Debelouchina GT, Ashcroft AE, Griffin RG, Stockley PG, Radford SE. Expanding the repertoire of amyloid polymorphs by co-polymerization of related protein precursors. J Biol Chem 2013; 288:7327-37. [PMID: 23329840 PMCID: PMC3591641 DOI: 10.1074/jbc.m112.447524] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Amyloid fibrils can be generated from proteins with diverse sequences and folds. Although amyloid fibrils assembled in vitro commonly involve a single protein precursor, fibrils formed in vivo can contain more than one protein sequence. How fibril structure and stability differ in fibrils composed of single proteins (homopolymeric fibrils) from those generated by co-polymerization of more than one protein sequence (heteropolymeric fibrils) is poorly understood. Here we compare the structure and stability of homo and heteropolymeric fibrils formed from human β2-microglobulin and its truncated variant ΔN6. We use an array of approaches (limited proteolysis, magic angle spinning NMR, Fourier transform infrared spectroscopy, and fluorescence) combined with measurements of thermodynamic stability to characterize the different fibril types. The results reveal fibrils with different structural properties, different side-chain packing, and strikingly different stabilities. These findings demonstrate how co-polymerization of related precursor sequences can expand the repertoire of structural and thermodynamic polymorphism in amyloid fibrils to an extent that is greater than that obtained by polymerization of a single precursor alone.
Collapse
Affiliation(s)
- Claire J Sarell
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|