1
|
Cooke MS, Chang YJ, Chen YR, Hu CW, Chao MR. Nucleic acid adductomics - The next generation of adductomics towards assessing environmental health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159192. [PMID: 36195140 DOI: 10.1016/j.scitotenv.2022.159192] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/07/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
This Discussion article aims to explore the potential for a new generation of assay to emerge from cellular and urinary DNA adductomics which brings together DNA-RNA- and, to some extent, protein adductomics, to better understand the role of the exposome in environmental health. Components of the exposome have been linked to an increased risk of various, major diseases, and to identify the precise nature, and size, of risk, in this complex mixture of exposures, powerful tools are needed. Modification of nucleic acids (NA) is a key consequence of environmental exposures, and a goal of cellular DNA adductomics is to evaluate the totality of DNA modifications in the genome, on the basis that this will be most informative. Consequently, an approach which encompasses modifications of all nucleic acids (NA) would be potentially yet more informative. This article focuses on NA adductomics, which brings together the assessment of both DNA and RNA modifications, including modified (2'-deoxy)ribonucleosides (2'-dN/rN), modified nucleobases (nB), plus: DNA-DNA, RNA-RNA, DNA-RNA, DNA-protein, and RNA-protein crosslinks (DDCL, RRCL, DRCL, DPCL, and RPCL, respectively). We discuss the need for NA adductomics, plus the pros and cons of cellular vs. urinary NA adductomics, and present some evidence for the feasibility of this approach. We propose that NA adductomics provides a more comprehensive approach to the study of nucleic acid modifications, which will facilitate a range of advances, including the identification of novel, unexpected modifications e.g., RNA-RNA, and DNA-RNA crosslinks; key modifications associated with mutagenesis; agent-specific mechanisms; and adductome signatures of key environmental agents, leading to the dissection of the exposome, and its role in human health/disease, across the life course.
Collapse
Affiliation(s)
- Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA.
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| |
Collapse
|
2
|
Khodorova NV, Jouan-Rimbaud Bouveresse D, Pilard S, Cordella C, Locquet N, Oberli M, Gaudichon C. Consumption of Boiled, but Not Grilled, Roasted, or Barbecued Beef Modifies the Urinary Metabolite Profiles in Rats. Mol Nutr Food Res 2022; 66:e2100872. [PMID: 35420736 DOI: 10.1002/mnfr.202100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/10/2022] [Indexed: 11/12/2022]
Abstract
SCOPE The consumption of processed meat is associated with increased risk of chronic diseases, but determining how the exposure to specific cooking processes alters the metabolome is an analytical challenge. This study aims to evaluate the impact of four typical cooking methods for beef (boiling, barbecuing, grilling, and roasting) on the urinary metabolite profiles in rats, using a non-targeted approach. METHODS AND RESULTS Male Wistar rats (n = 48) are fed for 3 weeks with experimental diets containing either raw or cooked (boiled, barbecued, grilled, and roasted) beef. A control group is fed with milk proteins. The 24 h-urines are analyzed using LC-MS. The consumption of boiled meat leads to the specific excretion of di- and tri-peptides (aspartyl-leucine, glycyl-aspartate, and aspartyl-prolyl-threonine) and a cyclo-prolyl-proline (p < 0.001). No singular metabolite specifically associated with the groups "grilled," "roasted," and "barbecued" meat is observed. CONCLUSION Urinary metabolite profiles of rats fed boiled beef are clearly distinct from those of rats fed with raw, grilled, roasted, or barbecued beef. The specific metabolites include the products of non-digested proteins and may be useful as potential intake biomarkers of this meat cooking method.
Collapse
Affiliation(s)
- Nadezda V Khodorova
- UMR PNCA, AgroParisTech, INRAE, Université Paris-Saclay, Paris, 75005, France
| | | | - Serge Pilard
- Plateforme Analytique, Université de Picardie Jules Verne, Amiens, 80039, France
| | - Christophe Cordella
- UMR PNCA, AgroParisTech, INRAE, Université Paris-Saclay, Paris, 75005, France
| | - Nathalie Locquet
- UMR PNCA, AgroParisTech, INRAE, Université Paris-Saclay, Paris, 75005, France
| | - Marion Oberli
- UMR PNCA, AgroParisTech, INRAE, Université Paris-Saclay, Paris, 75005, France
| | - Claire Gaudichon
- UMR PNCA, AgroParisTech, INRAE, Université Paris-Saclay, Paris, 75005, France
| |
Collapse
|
3
|
Approaching Sites of Action of Temozolomide for Pharmacological and Clinical Studies in Glioblastoma. Biomedicines 2021; 10:biomedicines10010001. [PMID: 35052681 PMCID: PMC8772814 DOI: 10.3390/biomedicines10010001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
Temozolomide (TMZ), together with bulk resection and focal radiotherapy, is currently a standard of care for glioblastoma. Absorption, distribution, metabolism, and excretion (ADME) parameters, together with the mode of action of TMZ, make its biochemical and biological action difficult to understand. Accurate understanding of the mode of action of TMZ and the monitoring of TMZ at its anatomical, cellular, and molecular sites of action (SOAs) would greatly benefit precision medicine and the development of novel therapeutic approaches in combination with TMZ. In the present perspective article, we summarize the known ADME parameters and modes of action of TMZ, and we review the possible methodological options to monitor TMZ at its SOAs. We focus our descriptions of methodologies on mass spectrometry-based approaches, and all related considerations are taken into account regarding the avoidance of artifacts in mass spectrometric analysis during sampling, sample preparation, and the evaluation of results. Finally, we provide an overview of potential applications for precision medicine and drug development.
Collapse
|
4
|
Geisen SM, Aloisi CMN, Huber SM, Sandell ES, Escher NA, Sturla SJ. Direct Alkylation of Deoxyguanosine by Azaserine Leads to O6-Carboxymethyldeoxyguanosine. Chem Res Toxicol 2021; 34:1518-1529. [PMID: 34061515 DOI: 10.1021/acs.chemrestox.0c00471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The O6-alkylguanosine adduct O6-carboxymethyldeoxyguanosine (O6-CMdG) has been detected at elevated levels in blood and tissue samples from colorectal cancer patients and from healthy volunteers after consuming red meat. The diazo compound l-azaserine leads to the formation of O6-CMdG as well as the corresponding methyl adduct O6-methyldeoxyguanosine (O6-MedG) in cells and is therefore in wide use as a chemical probe in cellular studies concerning DNA damage and mutation. However, there remain knowledge gaps concerning the chemical basis of DNA adduct formation by l-azaserine. To characterize O6-CMdG formation by l-azaserine, we carried out a combination of chemical and enzymatic stability and reactivity studies supported by liquid chromatography tandem mass spectrometry for the simultaneous quantification of O6-CMdG and O6-MedG. We found that l-azaserine is stable under physiological and alkaline conditions as well as in active biological matrices but undergoes acid-catalyzed hydrolysis. We show, for the first time, that l-azaserine reacts directly with guanosine (dG) and oligonucleotides to form an O6-serine-CMdG (O6-Ser-CMdG) adduct. Moreover, by characterizing the reaction of dG with l-azaserine, we demonstrate that O6-Ser-CMdG forms as an intermediate that spontaneously decomposes to form O6-CMdG. Finally, we quantified levels of O6-CMdG and O6-MedG in a human cell line exposed to l-azaserine and found maximal adduct levels after 48 h. The findings of this work elucidate the chemical basis of how l-azaserine reacts with deoxyguanosine and support its use as a chemical probe for N-nitroso compound exposure in carcinogenesis research, particularly concerning the identification of pathways and factors that promote adduct formation.
Collapse
Affiliation(s)
- Susanne M Geisen
- Department of Health Science and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Claudia M N Aloisi
- Department of Health Science and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Sabrina M Huber
- Department of Health Science and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Emma S Sandell
- Department of Health Science and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Nora A Escher
- Department of Health Science and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Shana J Sturla
- Department of Health Science and Technology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
5
|
Aloisi CMN, Sandell ES, Sturla SJ. A Chemical Link between Meat Consumption and Colorectal Cancer Development? Chem Res Toxicol 2021; 34:12-23. [PMID: 33417435 DOI: 10.1021/acs.chemrestox.0c00395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
O6-carboxymethylguanine (O6-CMG) is a mutagenic DNA adduct that forms at increased levels when people eat meat. It has been studied as a potential initiating event in colorectal carcinogenesis. It can arise from alkylation of guanine in DNA by electrophilic degradation products of N-nitroso compounds. There is significant data regarding biochemical and cellular process, including DNA repair and translesion DNA synthesis that control O6-CMG accumulation, persistence, and mutagenicity. Mutation spectra arising from the adduct closely resemble common mutations in colorectal cancer; however, gaps remain in understanding the biochemical processes that regulate how and where the damage persists in the genome. Addressing such questions relies on advances in chemistry such as synthesis approaches and bioanalytical methods. Results of research in this area help advance our understanding of the toxicological relevance of O6-CMG-modified DNA. Further attention should focus on understanding how a combination of genetic and environmental factors control its biological persistence and how this information can be used as a basis of biomoniotoring and prevention efforts to help mitigate colon cancer risk.
Collapse
Affiliation(s)
- Claudia M N Aloisi
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Emma S Sandell
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
6
|
Aloisi CMN, Nilforoushan A, Ziegler N, Sturla SJ. Sequence-Specific Quantitation of Mutagenic DNA Damage via Polymerase Amplification with an Artificial Nucleotide. J Am Chem Soc 2020; 142:6962-6969. [PMID: 32196326 PMCID: PMC7192524 DOI: 10.1021/jacs.9b11746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
DNA mutations can result from replication
errors due to different
forms of DNA damage, including low-abundance DNA adducts induced by
reactions with electrophiles. The lack of strategies to measure DNA
adducts within genomic loci, however, limits our understanding of
chemical mutagenesis. The use of artificial nucleotides incorporated
opposite DNA adducts by engineered DNA polymerases offers a potential
basis for site-specific detection of DNA adducts, but the availability
of effective artificial nucleotides that insert opposite DNA adducts
is extremely limited, and furthermore, there has been no report of
a quantitative strategy for determining how much DNA alkylation occurs
in a sequence of interest. In this work, we synthesized an artificial
nucleotide triphosphate that is selectively inserted opposite O6-carboxymethyl-guanine DNA by an engineered
polymerase and is required for DNA synthesis past the adduct. We characterized
the mechanism of this enzymatic process and demonstrated that the
artificial nucleotide is a marker for the presence and location in
the genome of O6-carboxymethyl-guanine.
Finally, we established a mass spectrometric method for quantifying
the incorporated artificial nucleotide and obtained a linear relationship
with the amount of O6-carboxymethyl-guanine
in the target sequence. In this work, we present a strategy to identify,
locate, and quantify a mutagenic DNA adduct, advancing tools for linking
DNA alkylation to mutagenesis and for detecting DNA adducts in genes
as potential diagnostic biomarkers for cancer prevention.
Collapse
Affiliation(s)
- Claudia M N Aloisi
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Arman Nilforoushan
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Nathalie Ziegler
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| |
Collapse
|
7
|
Guo S, Leng J, Tan Y, Price NE, Wang Y. Quantification of DNA Lesions Induced by 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol in Mammalian Cells. Chem Res Toxicol 2019; 32:708-717. [PMID: 30714728 DOI: 10.1021/acs.chemrestox.8b00374] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Quantitative measurement of DNA adducts in carcinogen-exposed cells provides the information about the frequency of formation and the rate of removal of DNA lesions in vivo, which yields insights into the initial events of mutagenesis. Metabolic activation of tobacco-specific nitrosamines, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its reduction product 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), leads to pyridyloxobutylation and pyridylhydroxybutylation of DNA. In this study, we employed a highly robust nanoflow liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry (nLC-nESI-MS/MS) coupled with the isotope-dilution method for simultaneous quantification of O6-[4-(3-pyridyl)-4-hydroxylbut-1-yl]-2'-deoxyguanosine ( O6-PHBdG) and O2- and O4-[4-(3-pyridyl)-4-hydroxylbut-1-yl]-thymidine ( O2-PHBdT and O4-PHBdT). Cultured mammalian cells were exposed to a model pyridylhydroxybutylating agent, 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanol (NNALOAc), followed by DNA extraction, enzymatic digestion, and sample enrichment prior to nLC-nESI-MS/MS quantification. Our results demonstrate, for the first time, that O4-PHBdT is quantifiable in cellular DNA and naked DNA upon NNALOAc exposure. We also show that nucleotide excision repair (NER) machinery may counteract the formation of O2-PHBdT and O4-PHBdT, and O6-alkylguanine DNA alkyltransferase (AGT) may be responsible for the repair of O6-PHBdG and O4-PHBdT in mammalian cells. Together, our study provides new knowledge about the occurrence and repair of NNAL-induced DNA lesions in mammalian cells.
Collapse
|
8
|
Cooke MS, Hu CW, Chang YJ, Chao MR. Urinary DNA adductomics - A novel approach for exposomics. ENVIRONMENT INTERNATIONAL 2018; 121:1033-1038. [PMID: 30392940 PMCID: PMC6279464 DOI: 10.1016/j.envint.2018.10.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/01/2018] [Accepted: 10/20/2018] [Indexed: 05/07/2023]
Abstract
The exposome is a concept that encompasses the totality of internal and external environmental exposures, from conception onwards. Evaluation of the exposome, across the lifecourse represents a significant challenge, e.g., methods/technology may simply not exist to comprehensively assess all exposures, or they may not be applicable to human populations, or may have insufficient sensitivity. Cellular DNA adductomics aims to determine the totality of DNA adducts in the cellular genome. However, application to human populations requires the necessarily invasive sampling of tissue, to obtain sufficient DNA for sensitive analysis, which can represent a logistical and IRB challenge, particularly when investigating vulnerable populations. To circumvent this, we recently applied DNA adductomics to urine, detecting a range of expected and unexpected 2'-deoxyribonucleoside DNA adducts. However, base excision repair, the main DNA repair pathway for non-bulky DNA adducts, and processes such as spontaneous depurination, generate nucleobase adducts. Herein we propose a strategy to simultaneously assess 2'-deoxyribonucleoside and nucleobase adducts, using a widely used mass spectrometic platform (i.e., triple quadrupole tandem mass spectrometry). This will provide a much needed DNA adductomic approach for non-invasively, biomonitoring environmental exposures, through assessing the totality of DNA adducts; contributing to the evaluation of the exposome, across the life-course.
Collapse
Affiliation(s)
- Marcus S Cooke
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA.
| | - Chiung-Wen Hu
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA; Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Yuan-Jhe Chang
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan
| | - Mu-Rong Chao
- Oxidative Stress Group, Department of Environmental Health Sciences, Florida International University, Miami, FL 33199, USA; Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| |
Collapse
|
9
|
Leng J, Wang Y. Liquid Chromatography-Tandem Mass Spectrometry for the Quantification of Tobacco-Specific Nitrosamine-Induced DNA Adducts in Mammalian Cells. Anal Chem 2017; 89:9124-9130. [PMID: 28749651 PMCID: PMC5620023 DOI: 10.1021/acs.analchem.7b01857] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Quantification of DNA lesions constitutes one of the main tasks in toxicology and in assessing health risks accompanied by exposure to carcinogens. Tobacco-specific nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and N'-nitrosonornicotine (NNN) can undergo metabolic transformation to give a reactive intermediate that pyridyloxobutylates nucleobases and phosphate backbone of DNA. Here, we reported a highly sensitive method, relying on the use of nanoflow liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry (nLC-nESI-MS/MS), for the simultaneous quantifications of O6-[4-(3-pyridyl)-4-oxobut-1-yl]-2'-deoxyguanosine (O6-POBdG) as well as O2- and O4-[4-(3-pyridyl)-4-oxobut-1-yl]-thymidine (O2-POBdT and O4-POBdT). By using this method, we measured the levels of the three DNA adducts with the use of 10 μg of DNA isolated from cultured mammalian cells exposed to a model pyridyloxobutylating agent, 4-(acetoxymethylnitrosamino)-1-(3-pyridyl)-1-butanone (NNKOAc). Our results demonstrated, for the first time, the formation of O4-POBdT in naked DNA and in genomic DNA of cultured mammalian cells exposed with NNKOAc. We also revealed that the levels of the three lesions increased with the dose of NNKOAc and that O2-POBdT and O4-POBdT could be subjected to repair by the nucleotide excision repair (NER) pathway. The method reported here will be useful for investigations about the involvement of other DNA repair pathways in the removal of these lesions and for human toxicological studies in the future.
Collapse
Affiliation(s)
- Jiapeng Leng
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Corresponding Author. Tel.: (951) 827-2700. Fax: (951) 827-4713.
| |
Collapse
|
10
|
Yu Y, Wang J, Wang P, Wang Y. Quantification of Azaserine-Induced Carboxymethylated and Methylated DNA Lesions in Cells by Nanoflow Liquid Chromatography-Nanoelectrospray Ionization Tandem Mass Spectrometry Coupled with the Stable Isotope-Dilution Method. Anal Chem 2016; 88:8036-42. [PMID: 27441891 PMCID: PMC5038140 DOI: 10.1021/acs.analchem.6b01349] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Humans are exposed to N-nitroso compounds through environmental exposure and endogenous metabolism. Some N-nitroso compounds can be metabolically activated to yield diazoacetate, which is known to induce DNA carboxymethylation. DNA lesion measurement remains one of the core tasks in toxicology and in evaluating human health risks associated with carcinogen exposure. In this study, we developed a highly sensitive nanoflow liquid chromatography-nanoelectrospray ionization-multistage tandem mass spectrometry (nLC-nESI-MS(3)) method for the simultaneous quantification of O(6)-carboxymethyl-2'-deoxyguanosine (O(6)-CMdG), O(6)-methyl-2'-deoxyguanosine (O(6)-MedG), and N(6)-carboxymethyl-2'-deoxyadenosine (N(6)-CMdA). We were able to measure the levels of these three lesions with the use of low-microgram quantities of DNA from cultured human skin fibroblasts and human colorectal carcinoma cells treated with azaserine, a DNA carboxymethylating agent. Our results revealed that the levels of O(6)-CMdG and O(6)-MedG increased when the dose of azaserine was increased from 0 to 450 μM. We, however, did not observe an apparent dose-dependent induction of N(6)-CMdA, suggesting the presence of repair mechanism(s) for the rapid clearance of this lesion in cells. This is the first report about the application of nLC-nESI-MS(3) technique for the simultaneous quantification of O(6)-CMdG, O(6)-MedG, and N(6)-CMdA. The method reported here will be useful for future investigations about the repair of the carboxymethylated DNA lesions and about the implications of these lesions in carcinogenesis.
Collapse
Affiliation(s)
- Yang Yu
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Jianshuang Wang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Pengcheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521, United States
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
11
|
Prasad S, Tyagi AK, Aggarwal BB. Detection of inflammatory biomarkers in saliva and urine: Potential in diagnosis, prevention, and treatment for chronic diseases. Exp Biol Med (Maywood) 2016; 241:783-99. [PMID: 27013544 DOI: 10.1177/1535370216638770] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inflammation is a part of the complex biological response of inflammatory cells to harmful stimuli, such as pathogens, irritants, or damaged cells. This inflammation has been linked to several chronic diseases including cancer, atherosclerosis, rheumatoid arthritis, and multiple sclerosis. Major biomarkers of inflammation include tumor necrosis factor, interleukins (IL)-1, IL-6, IL-8, chemokines, cyclooxygenase, 5-lipooxygenase, and C-reactive protein, all of which are regulated by the transcription factor nuclear factor-kappaB. Although examining inflammatory biomarkers in blood is a standard practice, its identification in saliva and/or urine is more convenient and non-invasive. In this review, we aim to (1) discuss the detection of these inflammatory biomarkers in urine and saliva; (2) advantages of using salivary and urinary inflammatory biomarkers over blood, while also weighing on the challenges and/or limitations of their use; (3) examine their role(s) in connection with diagnosis, prevention, treatment, and drug development for several chronic diseases with inflammatory consequences, including cancer; and (4) explore the use of innovative salivary and urine based biosensor strategies that may permit the testing of biomarkers quickly, reliably, and cost-effectively, in a decentralized setting.
Collapse
Affiliation(s)
- Sahdeo Prasad
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Amit K Tyagi
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
12
|
Liu S, Wang Y. Mass spectrometry for the assessment of the occurrence and biological consequences of DNA adducts. Chem Soc Rev 2015; 44:7829-54. [PMID: 26204249 PMCID: PMC4787602 DOI: 10.1039/c5cs00316d] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exogenous and endogenous sources of chemical species can react, directly or after metabolic activation, with DNA to yield DNA adducts. If not repaired, DNA adducts may compromise cellular functions by blocking DNA replication and/or inducing mutations. Unambiguous identification of the structures and accurate measurements of the levels of DNA adducts in cellular and tissue DNA constitute the first and important step towards understanding the biological consequences of these adducts. The advances in mass spectrometry (MS) instrumentation in the past 2-3 decades have rendered MS an important tool for structure elucidation, quantification, and revelation of the biological consequences of DNA adducts. In this review, we summarized the development of MS techniques on these fronts for DNA adduct analysis. We placed our emphasis of discussion on sample preparation, the combination of MS with gas chromatography- or liquid chromatography (LC)-based separation techniques for the quantitative measurement of DNA adducts, and the use of LC-MS along with molecular biology tools for understanding the human health consequences of DNA adducts. The applications of mass spectrometry-based DNA adduct analysis for predicting the therapeutic outcome of anti-cancer agents, for monitoring the human exposure to endogenous and environmental genotoxic agents, and for DNA repair studies were also discussed.
Collapse
Affiliation(s)
- Shuo Liu
- Environmental Toxicology Graduate Program, University of California, Riverside, California, USA
| | - Yinsheng Wang
- Environmental Toxicology Graduate Program, University of California, Riverside, California, USA and Department of Chemistry, University of California, Riverside, CA 92521-0403, USA.
| |
Collapse
|
13
|
Struck-Lewicka W, Kaliszan R, Markuszewski MJ. Analysis of urinary nucleosides as potential cancer markers determined using LC–MS technique. J Pharm Biomed Anal 2014; 101:50-7. [DOI: 10.1016/j.jpba.2014.04.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/18/2014] [Accepted: 04/22/2014] [Indexed: 01/05/2023]
|