1
|
Chaganti S, Kushwah BS, Velip L, Tiwari SS, Chilvery S, Godugu C, Samanthula G. In vivo and in vitro metabolite profiling of nirmatrelvir using LC-Q-ToF-MS/MS along with the in silico approaches for prediction of metabolites and their toxicity. Biomed Chromatogr 2024; 38:e5849. [PMID: 38403275 DOI: 10.1002/bmc.5849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/22/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024]
Abstract
Nirmatrelvir (NRV), a 3C-like protease or Mpro inhibitor of SARS-CoV-2, is used for the treatment of COVID-19 in adult and paediatric patients. The present study was accomplished to investigate the comprehensive metabolic fate of NRV using in vitro and in vivo models. The in vitro models used for the study were microsomes (human liver microsomes, rat liver microsomes, mouse liver microsomes) and S9 fractions (human liver S9 fractions and rat liver S9 fractions) with the appropriate cofactors, whereas Sprague-Dawley rats were used as the in vivo models. Nirmatrelvir was administered orally to Sprague-Dawley rats, which was followed by the collection of urine, faeces and blood at pre-determined time intervals. Protein precipitation was used as the sample preparation method for all the samples. The samples were then analysed by liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (LC-Q-ToF-MS/MS) using an Acquity BEH C18 column with 0.1% formic acid and acetonitrile as the mobile phase. Four metabolites were found to be novel, which were formed via amide hydrolysis, oxidation and hydroxylation. Furthermore, an in silico analysis was performed using Meteor Nexus software to predict the probable metabolic changes of NRV. The toxicity and mutagenicity of NRV and its metabolites were also determined using DEREK Nexus and SARAH Nexus.
Collapse
Affiliation(s)
- Sowmya Chaganti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Bhoopendra Singh Kushwah
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Laximan Velip
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shristy S Tiwari
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Shrilekha Chilvery
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Chandraiah Godugu
- Department of Pharmacology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Gananadhamu Samanthula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| |
Collapse
|
2
|
Tang LWT, Lim RYR, Venkatesan G, Chan ECY. Rational deuteration of dronedarone attenuates its toxicity in human hepatic HepG2 cells. Toxicol Res (Camb) 2022; 11:311-324. [PMID: 35510231 PMCID: PMC9052316 DOI: 10.1093/toxres/tfac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/19/2022] [Accepted: 03/11/2022] [Indexed: 11/14/2022] Open
Abstract
Deuteration is a chemical modification strategy that has recently gained traction in drug development. The replacement of one or more hydrogen atom(s) in a drug molecule with its heavier stable isotope deuterium can enhance its metabolic stability and pharmacokinetic properties. However, it remains uninterrogated if rational deuteration at bioactivation "hot-spots" could attenuate its associated toxicological consequences. Here, our preliminary screening with benzofuran antiarrhythmic agents first revealed that dronedarone and its major metabolite N-desbutyldronedarone elicited a greater loss of viability and cytotoxicity in human hepatoma G2 (HepG2) cells as compared with amiodarone and its corresponding metabolite N-desethylamiodarone. A comparison of dronedarone and its in-house synthesized deuterated analogue (termed poyendarone) demonstrated that deuteration could attenuate its in vitro toxicity in HepG2 cells by modulating the extent of mitochondrial dysfunction, reducing the dissipation of mitochondrial membrane potential, and evoking a distinct apoptotic kinetic signature. Furthermore, although pretreatment with the CYP3A inducer rifampicin or the substitution of glucose with galactose in the growth media significantly augmented the loss of cell viability elicited by dronedarone and poyendarone, a lower loss of cell viability was consistently observed in poyendarone across all concentrations. Taken together, our preliminary investigations suggested that the rational deuteration of dronedarone at its benzofuran ring reduces aberrant cytochrome P450 3A4/5-mediated bioactivation, which attenuated its mitochondrial toxicity in human hepatic HepG2 cells.
Collapse
Affiliation(s)
- Lloyd Wei Tat Tang
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, 117543, Singapore
| | - Royden Yu Ren Lim
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, 117543, Singapore
| | - Gopalakrishnan Venkatesan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, 117543, Singapore
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, 117543, Singapore
| |
Collapse
|
3
|
Interest of high-resolution mass spectrometry in analytical toxicology: Focus on pharmaceuticals. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2022. [DOI: 10.1016/j.toxac.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Wei H, Li AP. Permeabilized cryopreserved human hepatocytes as an exogenous metabolic system in a novelmetabolism-dependent cytotoxicity assay (MDCA) for the evaluation of metabolic activation anddetoxification of drugs associated with drug induced liver injuries: Results with acetaminophen,amiodarone, cyclophosphamide, ketoconazole, nefazodone, and troglitazone. Drug Metab Dispos 2021; 50:140-149. [PMID: 34750194 DOI: 10.1124/dmd.121.000645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
We report here a novel in vitro experimental system, the metabolism-dependent cytotoxicity assay (MDCA), for the definition of the roles of hepatic drug metabolism in toxicity. MDCA employs permeabilized cofactor-supplemented cryopreserved human hepatocytes (MetMax{trade mark, serif} human hepatocytes, MMHH), as an exogenous metabolic activating system, and HEK-293 cells, a cell line devoid of drug metabolizing enzyme activity, as target cells for the quantification of drug toxicity. The assay was performed in the presence and absence of cofactors for key drug metabolism pathways known to play key roles in drug toxicity: NADPH/NAD+ for phase 1 oxidation, UDPGA for UGT mediated glucuronidation, PAPS for SULT mediated sulfation, and GSH for GST mediated GSH conjugation. Six drugs with clinically significant hepatoxicity, resulting in liver failure or a need for liver transplantation: acetaminophen, amiodarone, cyclophosphamide, ketoconazole, nefazodone and troglitazone were evaluated. All six drugs exhibited cytotoxicity enhancement by NADPH, suggesting metabolic activation via phase 1 oxidation. Attenuation of cytotoxicity by UDPGA was observed for acetaminophen, ketoconazole and troglitazone, by PAPS for acetaminophen, ketoconazole and troglitazone, and by GSH for all six drugs. Our results suggest that MDCA can be applied towards the elucidation of metabolic activation and detoxification pathways, providing information that can be applied in drug development to guide structure optimization to reduce toxicity and to aid the assessment of metabolism-based risk factors for drug toxicity. GSH detoxification represents an endpoint for the identification of drugs forming cytotoxic reactive metabolites, a key property of drugs with idiosyncratic hepatotoxicity. Significance Statement Application of the metabolism-dependent cytotoxicity assay (MDCA) for the elucidation of the roles of metabolic activation and detoxification pathways in drug toxicity may provide information to guide structure optimization in drug development to reduce hepatotoxic potential, and to aid the assessment of metabolism-based risk factors. GSH detoxification represents an endpoint for the identification of drugs forming cytotoxic reactive metabolites may be applied towards the evaluation of idiosyncratic hepatotoxicity.
Collapse
Affiliation(s)
- Hong Wei
- In Vitro ADMET Laboratories, United States
| | - Albert P Li
- In Vitro ADMET Laboratories Inc., United States
| |
Collapse
|
5
|
Guo J, Li F, Cheng F, Ma L, Liu X, Durairaj P, Zhang G, Tang D, Long X, Zhang W, Du L, Zhang X, Li S. Bacterial Biosynthetic P450 Enzyme PikC D50N: A Potential Biocatalyst for the Preparation of Human Drug Metabolites. J Org Chem 2021; 86:14563-14571. [PMID: 34662127 DOI: 10.1021/acs.joc.1c01407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human drug metabolites (HDMs) are important chemicals widely used in drug-related studies. However, acquiring these enzyme-derived and regio-/stereo-selectively modified compounds through chemical approaches is complicated. PikC is a biosynthetic P450 enzyme involved in pikromycin biosynthesis from the bacterium Streptomyces venezuelae. Here, we identify the mutant PikCD50N as a potential biocatalyst, with a broad substrate scope, diversified product profile, and high catalytic efficiency, for preparation of HDMs. Remarkably, PikCD50N can mediate the drug-metabolizing reactions using the low-cost H2O2 as a direct electron and oxygen donor.
Collapse
Affiliation(s)
- Jiawei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| | - Fengwei Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Fangyuan Cheng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaohui Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Pradeepraj Durairaj
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Gang Zhang
- Fujian Universities and Colleges Engineering Research Center of Marine Biopharmaceutical Resources, Xiamen Medical College, Xiamen, Fujian 361023, China
| | - Dandan Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xiangtian Long
- Tianjin Hankang Pharmaceutical Biotechnology Co. Ltd., Tianjin 300409, China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
6
|
Abstract
Metabolite profiling is an indispensable part of drug discovery and development, enabling a comprehensive understanding of the drug's metabolic behavior. Liquid chromatography-mass spectrometry facilitates metabolite profiling by reducing sample complexity and providing high sensitivity. This review discusses the in vivo metabolite profiling involving LC-MS/MS and the utilization of QTOF, QQQ mass analyzers with a particular emphasis on a mass filter. Further, a summary of sample extraction procedures in biological matrices such as plasma, urine, feces, serum and hair as in vivo samples are outlined. toward the end, we present 15 case studies in biological matrices and their LC-MS/MS conditions to understand the metabolic disposition.
Collapse
|
7
|
Liu KH, Lee CM, Singer G, Bais P, Castellanos F, Woodworth MH, Ziegler TR, Kraft CS, Miller GW, Li S, Go YM, Morgan ET, Jones DP. Large scale enzyme based xenobiotic identification for exposomics. Nat Commun 2021; 12:5418. [PMID: 34521839 PMCID: PMC8440538 DOI: 10.1038/s41467-021-25698-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
Advances in genomics have revealed many of the genetic underpinnings of human disease, but exposomics methods are currently inadequate to obtain a similar level of understanding of environmental contributions to human disease. Exposomics methods are limited by low abundance of xenobiotic metabolites and lack of authentic standards, which precludes identification using solely mass spectrometry-based criteria. Here, we develop and validate a method for enzymatic generation of xenobiotic metabolites for use with high-resolution mass spectrometry (HRMS) for chemical identification. Generated xenobiotic metabolites were used to confirm identities of respective metabolites in mice and human samples based upon accurate mass, retention time and co-occurrence with related xenobiotic metabolites. The results establish a generally applicable enzyme-based identification (EBI) for mass spectrometry identification of xenobiotic metabolites and could complement existing criteria for chemical identification.
Collapse
Affiliation(s)
- Ken H. Liu
- grid.189967.80000 0001 0941 6502Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, Georgia USA
| | - Choon M. Lee
- grid.189967.80000 0001 0941 6502Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia USA
| | - Grant Singer
- grid.189967.80000 0001 0941 6502Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia USA
| | - Preeti Bais
- The Jackson Laboratory for Genomic Medicine, Atlanta, Connecticut USA
| | | | - Michael H. Woodworth
- grid.189967.80000 0001 0941 6502Division of Infectious Disease, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia USA
| | - Thomas R. Ziegler
- grid.189967.80000 0001 0941 6502Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia USA
| | - Colleen S. Kraft
- grid.189967.80000 0001 0941 6502Division of Infectious Disease, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia USA ,grid.189967.80000 0001 0941 6502Emory University School of Medicine, Department of Pathology and Laboratory Medicine, Atlanta, Georgia USA
| | - Gary W. Miller
- grid.21729.3f0000000419368729Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York USA
| | - Shuzhao Li
- The Jackson Laboratory for Genomic Medicine, Atlanta, Connecticut USA
| | - Young-Mi Go
- grid.189967.80000 0001 0941 6502Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, Georgia USA
| | - Edward T. Morgan
- grid.189967.80000 0001 0941 6502Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia USA
| | - Dean P. Jones
- grid.189967.80000 0001 0941 6502Clinical Biomarkers Laboratory, Department of Medicine, Emory University, Atlanta, Georgia USA
| |
Collapse
|
8
|
Kato R, Ijiri Y, Hayashi T. Amiodarone, Unlike Dronedarone, Activates Inflammasomes via Its Reactive Metabolites: Implications for Amiodarone Adverse Reactions. Chem Res Toxicol 2021; 34:1860-1865. [PMID: 34142814 DOI: 10.1021/acs.chemrestox.1c00127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Amiodarone is a benzofuran derivative used to treat arrhythmias, but its use is limited by adverse reactions. There is evidence that some of the severe adverse reactions such as liver injury and interstitial lung disease are immune-mediated; however, details of the mechanism have not been elucidated. We tested the ability of amiodarone to induce the release of danger-associated molecular patterns (DAMPs) that activate inflammasomes. Human hepatocarcinoma functional liver cell-4 (FLC-4) cells were used for drug bioactivation, and the detection of inflammasome activation was performed with the human macrophage cell line, THP-1 cells. Amiodarone is known to be oxidized to reactive quinone metabolites. The supernatant from the incubation of amiodarone with FLC-4 cells for 7 days increased caspase-1 activity and production of IL-1ß by THP-1 cells. In the supernatant of FLC-4 cells with amiodarone, the heat shock protein (HSP) 40 was significantly increased. Addition of a cytochrome P450 inhibitor to the FLC-4 cells prevented the release of HSP40 from the FLC-4 cells and activation of THP-1 inflammasomes by the FLC-4 supernatant. These results suggested that the reactive quinone metabolites of amiodarone can cause the release of DAMPs from hepatocytes which can activate inflammasomes. Dronedarone, a safer analog of amiodarone, did not activate inflammasomes. Inflammasome activation may be an important step in the activation of the immune system by amiodarone, which in some patients, can cause immune-related adverse events. In addition, our data suggest that drugs that block the effects or the formation of IL-1β would provide better treatment of amiodarone-induced immune-related adverse reactions.
Collapse
Affiliation(s)
- Ryuji Kato
- Department of Cardiovascular Pharmacotherapy and Toxicology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
| | - Yoshio Ijiri
- Department of Cardiovascular Pharmacotherapy and Toxicology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
| | - Tetsuya Hayashi
- Department of Cardiovascular Pharmacotherapy and Toxicology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
| |
Collapse
|
9
|
Advancements in practical and scientific bioanalytical approaches to metabolism studies in drug development. Bioanalysis 2021; 13:913-930. [PMID: 33961500 DOI: 10.4155/bio-2021-0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Advancement in metabolism profiling approaches and bioanalytical techniques has been revolutionized over the last two decades. Different in vitro and in vivo approaches along with advanced bioanalytical techniques are enabling the accurate qualitative and quantitative analysis of metabolites. This review summarizes various modern in vitro and in vivo approaches for executing metabolism studies with special emphasis on the recent advancement in the field. Advanced bioanalytical techniques, which can be employed in metabolism studies, have been discussed suggesting their particular application based on specific study objectives. This article can efficiently guide the researchers to scientifically plan metabolism studies and their bioanalysis during drug development programs taking advantage of a detailed understanding of instances of failure in the past.
Collapse
|
10
|
Tiwari SS, Dhiman V, Mukesh S, Sangamwar AT, Srinivas R, Talluri MVNK. Identification and characterization of novel metabolites of nintedanib by ultra-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry with in silico toxicological assessment. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8915. [PMID: 32761944 DOI: 10.1002/rcm.8915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Nintedanib, an oral, triple angiokinase inhibitor, is used alongside docetaxel in the management of locally recurrent non-small-cell lung cancer and idiopathic pulmonary fibrosis. The present study deals with the identification and characterization of in vitro and in vivo stable and reactive (if any) metabolites of nintedanib and sheds light on some novel metabolites of the drug which have not been reported previously. METHODS The study involved an oral administration of the drug to male Wistar rats, followed by collection of the biological matrices (urine, plasma and feces) at specific intervals for determination of in vivo metabolites. In addition, in vitro studies were performed on human and rat liver microsomes in the presence of appropriate co-factors. The samples were subjected to protein precipitation and nitrogen evaporation prior to ultra-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry analysis. The toxicities of all the metabolites were assessed in silico, employing ADMET Predictor™. RESULTS A total of 18 metabolites of nintedanib were identified in all the matrices, of which nine were found to be novel and unreported previously. The unreported metabolites were elucidated as oxidative, demethylated and glucuronide conjugates of nintedanib. Interestingly, acetonitrile adducts of a few metabolites (low concentration) were also observed. No reactive metabolites were observed in this study. CONCLUSIONS Characterization of hitherto unknown in vitro and in vivo metabolites of nintedanib adds to the existing knowledge on the metabolism of the drug. Identification on the basis of the solvated adducts can be a useful approach for characterization of minor metabolites, which remain undetected owing to sensitivity issues.
Collapse
Affiliation(s)
- Shristy S Tiwari
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D, Campus, Balanagar, Hyderabad, 500 037, India
| | - Vivek Dhiman
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D, Campus, Balanagar, Hyderabad, 500 037, India
| | - Sumit Mukesh
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Abhay T Sangamwar
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab, 160 062, India
| | - Ragampeta Srinivas
- Analytical Department, CSIR - Indian Institute of Chemical Technology (CSIRIICT), Uppal Road, Tarnaka, Hyderabad, Telangana State, 500 007, India
| | - M V N Kumar Talluri
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D, Campus, Balanagar, Hyderabad, 500 037, India
| |
Collapse
|
11
|
Emerging club drugs: 5-(2-aminopropyl)benzofuran (5-APB) is more toxic than its isomer 6-(2-aminopropyl)benzofuran (6-APB) in hepatocyte cellular models. Arch Toxicol 2019; 94:609-629. [PMID: 31838565 DOI: 10.1007/s00204-019-02638-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022]
Abstract
New phenylethylamine derivatives are among the most commonly abused new psychoactive substances. They are synthesized and marketed in lieu of classical amphetaminic stimulants, with no previous safety testing. Our study aimed to determine the in vitro hepatotoxicity of two benzofurans [6-(2-aminopropyl)benzofuran (6-APB) and 5-(2-aminopropyl)benzofuran (5-APB)] that have been misused as 'legal highs'. Cellular viability was assessed through the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction assay, following 24-h drug exposure of human hepatoma HepaRG cells (EC50 2.62 mM 5-APB; 6.02 mM 6-APB), HepG2 cells (EC50 3.79 mM 5-APB; 8.18 mM 6-APB) and primary rat hepatocytes (EC50 964 μM 5-APB; 1.94 mM 6-APB). Co-incubation of primary hepatocytes, the most sensitive in vitro model, with CYP450 inhibitors revealed a role of metabolism, in particular by CYP3A4, in the toxic effects of both benzofurans. Also, 6-APB and 5-APB concentration-dependently enhanced oxidative stress (significantly increased reactive species and oxidized glutathione, and decreased reduced glutathione levels) and unsettled mitochondrial homeostasis, with disruption of mitochondrial membrane potential and decline of intracellular ATP. Evaluation of cell death mechanisms showed increased caspase-8, -9, and -3 activation, and nuclear morphological changes consistent with apoptosis; at concentrations higher than 2 mM, however, necrosis prevailed. Concentration-dependent formation of acidic vesicular organelles typical of autophagy was also observed for both drugs. Overall, 5-APB displayed higher hepatotoxicity than its 6-isomer. Our findings provide new insights into the potential hepatotoxicity of these so-called 'safe drugs' and highlight the putative risks associated with their use as psychostimulants.
Collapse
|
12
|
Xu J, Zhang QF, Zheng J, Yuan BF, Feng YQ. Mass spectrometry-based fecal metabolome analysis. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
13
|
Fődi T, Ignácz G, Decsi B, Béni Z, Túrós GI, Kupai J, Weiser DB, Greiner I, Huszthy P, Balogh GT. Biomimetic Synthesis of Drug Metabolites in Batch and Continuous-Flow Reactors. Chemistry 2018; 24:9385-9392. [DOI: 10.1002/chem.201800892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Tamás Fődi
- Compound Profiling Laboratory; Gedeon Richter Plc; Gyömrői út 19-21 1103 Budapest Hungary
- Department of Organic Chemistry and Technology; Budapest University of Technology and Economics; Műegyetem rkp. 3 1111 Budapest Hungary
| | - Gergő Ignácz
- Compound Profiling Laboratory; Gedeon Richter Plc; Gyömrői út 19-21 1103 Budapest Hungary
- Department of Organic Chemistry and Technology; Budapest University of Technology and Economics; Műegyetem rkp. 3 1111 Budapest Hungary
| | - Balázs Decsi
- Compound Profiling Laboratory; Gedeon Richter Plc; Gyömrői út 19-21 1103 Budapest Hungary
- Department of Organic Chemistry and Technology; Budapest University of Technology and Economics; Műegyetem rkp. 3 1111 Budapest Hungary
| | - Zoltán Béni
- Spectroscopic Research Department; Gedeon Richter Plc; Gyömrői út 19-21 1103 Budapest Hungary
| | - György I. Túrós
- Medicinal Chemistry Laboratory II; Gedeon Richter Plc; Gyömrői út 19-21 1103 Budapest Hungary
| | - József Kupai
- Department of Organic Chemistry and Technology; Budapest University of Technology and Economics; Műegyetem rkp. 3 1111 Budapest Hungary
| | - Diána Balogh Weiser
- Department of Organic Chemistry and Technology; Budapest University of Technology and Economics; Műegyetem rkp. 3 1111 Budapest Hungary
- Department of Physical Chemistry and Materials Science; Budapest University of Technology and Economics; Budafoki út 8 1111 Budapest Hungary
| | - István Greiner
- Research Directorate, Chemical Works; Gedeon Richter Plc; Gyömrői út 19-21 1103 Budapest Hungary
| | - Péter Huszthy
- Department of Organic Chemistry and Technology; Budapest University of Technology and Economics; Műegyetem rkp. 3 1111 Budapest Hungary
| | - György T. Balogh
- Compound Profiling Laboratory; Gedeon Richter Plc; Gyömrői út 19-21 1103 Budapest Hungary
| |
Collapse
|
14
|
Johnsi Rani P, Vishnuvardhan C, Nimbalkar RD, Garg P, Satheeshkumar N. Metabolite characterization of ambrisentan, in in vitro and in vivo matrices by UHPLC/QTOF/MS/MS: Detection of glutathione conjugate of epoxide metabolite evidenced by in vitro GSH trapping assay. J Pharm Biomed Anal 2018; 155:320-328. [DOI: 10.1016/j.jpba.2018.04.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 01/11/2023]
|
15
|
Jeong ES, Kim G, Yim D, Moon KS, Lee SJ, Shin JG, Kim DH. Identification and characterization of amiodarone metabolites in rats using UPLC-ESI-QTOFMS-based untargeted metabolomics approach. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:481-492. [PMID: 29641932 DOI: 10.1080/15287394.2018.1460783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Amiodarone is a class III anti-arrhythmic benzofuran derivative extensively utilized in treatment of life-threatening ventricular and supraventricular arrhythmias. However, amiodarone also produces adverse side effects including liver injury due to its metabolites rather than parent drug. The purpose of the present study was to identify metabolites of amiodarone in the plasma and urine of rats administered the drug by using an untargeted metabolomics approach. Drug metabolites were profiled by ultra-performance liquid chromatography-linked electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS) and results subjected to multivariate data analysis. A total of 49 amiodarone metabolites were identified and their structures were characterized by tandem mass spectrometry. Amiodarone metabolites are presumed to be generated via five major types of metabolic reactions including N-desethylation, hydroxylation, carboxylation (oxo/hydroxylation), de-iodination, and glucuronidation. Data demonstrated that an untargeted metabolomics approach appeared to be a reliable tool for identifying unknown metabolites in a complex biological matrix.
Collapse
Affiliation(s)
- Eun Sook Jeong
- a Department of Pharmacology and PharmacoGenomics Research Center , Inje University College of Medicine , Busan , Korea
| | - Gabin Kim
- a Department of Pharmacology and PharmacoGenomics Research Center , Inje University College of Medicine , Busan , Korea
| | - Daeun Yim
- a Department of Pharmacology and PharmacoGenomics Research Center , Inje University College of Medicine , Busan , Korea
| | - Kyung-Sik Moon
- b Korea Institute of Toxicology , Yuseong-gu, Daejeon , Korea
| | - Su-Jun Lee
- a Department of Pharmacology and PharmacoGenomics Research Center , Inje University College of Medicine , Busan , Korea
| | - Jae-Gook Shin
- a Department of Pharmacology and PharmacoGenomics Research Center , Inje University College of Medicine , Busan , Korea
| | - Dong Hyun Kim
- a Department of Pharmacology and PharmacoGenomics Research Center , Inje University College of Medicine , Busan , Korea
| |
Collapse
|
16
|
Chavan BB, Kalariya PD, Tiwari S, Nimbalkar RD, Garg P, Srinivas R, Talluri MVNK. Identification and characterization of vilazodone metabolites in rats and microsomes by ultrahigh-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2017; 31:1974-1984. [PMID: 28875544 DOI: 10.1002/rcm.7982] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/30/2017] [Accepted: 08/31/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE Vilazodone is a selective serotonin reuptake inhibitor (SSRI) used for the treatment of major depressive disorder (MDD). An extensive literature search found few reports on the in vivo and in vitro metabolism of vilazodone. Therefore, we report a comprehensive in vivo and in vitro metabolic identification and structural characterization of vilazodone using ultrahigh-performance liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF/MS/MS) and in silico toxicity study of the metabolites. METHODS To identify in vivo metabolites of vilazodone, blood, urine and faeces samples were collected at different time intervals starting from 0 h to 48 h after oral administration of vilazodone to Sprague-Dawley rats. The in vitro metabolism study was conducted with human liver microsomes (HLM) and rat liver microsomes (RLM). The samples were prepared using an optimized sample preparation approach involving protein precipitation followed by solid-phase extraction. The metabolites have been identified and characterized by using LC/ESI-MS/MS. RESULTS A total of 12 metabolites (M1-M12) were identified in in vivo and in vitro matrices and characterized by LC/ESI-MS/MS. The majority of the metabolites were observed in urine, while a few metabolites were present in faeces and plasma. Two metabolites were observed in the in vitro study. A semi-quantitative study based on percentage counts shows that metabolites M11, M6 and M8 were observed in higher amounts in urine, faeces and plasma, respectively. CONCLUSIONS The structures of all the 12 metabolites were elucidated by using LC/ESI-MS/MS. The study suggests that vilazodone was metabolized via hydroxylation, dihydroxylation, glucuronidation, oxidative deamination, dealkylation, dehydrogenation and dioxidation. All the metabolites were screened for toxicity using an in silico tool.
Collapse
Affiliation(s)
- Balasaheb B Chavan
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D Campus, Balanagar, Hyderabad, 500 037, India
| | - Pradipbhai D Kalariya
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D Campus, Balanagar, Hyderabad, 500 037, India
| | - Shristy Tiwari
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D Campus, Balanagar, Hyderabad, 500 037, India
| | - Rakesh D Nimbalkar
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S., Nagar, 160 062, Punjab, India
| | - Prabha Garg
- National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S., Nagar, 160 062, Punjab, India
| | - R Srinivas
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D Campus, Balanagar, Hyderabad, 500 037, India
- National Center for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500 607, India
| | - M V N Kumar Talluri
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research, IDPL R&D Campus, Balanagar, Hyderabad, 500 037, India
| |
Collapse
|
17
|
El-Mohandes EM, Moustafa AM, Khalaf HA, Hassan YF. The role of mast cells and macrophages in amiodarone induced pulmonary fibrosis and the possible attenuating role of atorvastatin. Biotech Histochem 2017; 92:467-480. [PMID: 28836856 DOI: 10.1080/10520295.2017.1350750] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Amiodarone (AM) is an effective anti-arrhythmic drug. We investigated the role of mast cells and macrophages on AM induced pulmonary fibrosis and the action of atorvastatin on this fibrosis. Rats were allocated into four groups; negative control (1), positive control (2), 30 mg/kg body weight/day AM (3) and AM + 10 mg/kg/day atorvastatin (4). Lungs were harvested and prepared for histology and immunohistochemistry. Hematoxylin and eosin stained sections of group 3 exhibited disorganized lung architecture. We found cellular debris in the lumen of both intrapulmonary bronchi and bronchioles with partial disruption of the thickened epithelial lining and mononuclear cellular infiltration into the lamina propria. We also observed thickening of the epithelial lining and the smooth muscle layer. Congested, dilated and thickened blood capillaries and thickened inter-alveolar septa were observed with mononuclear cellular infiltrates in the lung of group 3. Most alveoli were collapsed, but some dilated ones were detected. In some alveoli, type ІІ pneumocytes were increased, while type I cells were decreased. We observed significant increases in the amount of collagen in the thickened inter-alveolar septa, around bronchioles and around blood capillaries in sections from group 3. We found a significant increase in mast cells and alveolar macrophages in group 3 compared to group 1. Mast cells and macrophages appear to play important roles in AM induced pulmonary fibrosis. Atorvastatin appears to attenuate this condition.
Collapse
Affiliation(s)
- E M El-Mohandes
- a Histology and Cell Biology Department, Faculty of Medicine , Mansoura University , Egypt
| | - A M Moustafa
- a Histology and Cell Biology Department, Faculty of Medicine , Mansoura University , Egypt
| | - H A Khalaf
- a Histology and Cell Biology Department, Faculty of Medicine , Mansoura University , Egypt
| | - Y F Hassan
- a Histology and Cell Biology Department, Faculty of Medicine , Mansoura University , Egypt
| |
Collapse
|
18
|
Vishnuvardhan C, Baikadi S, Borkar RM, Srinivas R, Satheeshkumar N. In vivo metabolic investigation of silodosin using UHPLC-QTOF-MS/MS and in silico toxicological screening of its metabolites. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:867-882. [PMID: 27747994 DOI: 10.1002/jms.3795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/19/2016] [Accepted: 05/29/2016] [Indexed: 06/06/2023]
Abstract
Silodosin (SLD) is a novel α1-adrenoceptor antagonist which has shown promising clinical efficacy and safety in patients with benign prostatic hyperplasia (BPH). However, lack of information about metabolism of SLD prompted us to investigate metabolic fate of SLD in rats. To identify in vivo metabolites of SLD, urine, feces and plasma were collected from Sprague-Dawley rats after its oral administration. The samples were prepared using an optimized sample preparation approach involving protein precipitation followed by solid-phase extraction and then subjected to LC/HR-MS/MS analysis. A total of 13 phase I and six phase II metabolites of SLD have been identified in rat urine which includes hydroxylated, N-dealkylated, dehydrogenated, oxidative, glucosylated, glucuronide and N-sulphated metabolites, which are also observed in feces. In plasma, only dehydrogenated, N-dealkylated and unchanged SLD are observed. The structure elucidation of metabolites was done by fragmentation in MS/MS in combination with HRMS data. The potential toxicity profile of SLD and its metabolites were predicted using TOPKAT software and most of the metabolites were proposed to show a certain degree of skin sensitization and occular irritancy. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Chiguru Vishnuvardhan
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad (NIPER-H), Balanagar, Hyderabad, 500037, Telangana, India
| | - Saibaba Baikadi
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad (NIPER-H), Balanagar, Hyderabad, 500037, Telangana, India
| | - Roshan M Borkar
- National Center for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500607, Telangana, India
| | - R Srinivas
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad (NIPER-H), Balanagar, Hyderabad, 500037, Telangana, India.
- National Center for Mass Spectrometry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500607, Telangana, India.
| | - N Satheeshkumar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hyderabad (NIPER-H), Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
19
|
Parmar KR, Jhajra S, Singh S. Detection of glutathione conjugates of amiodarone and its reactive diquinone metabolites in rat bile using mass spectrometry tools. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1242-1248. [PMID: 28328020 DOI: 10.1002/rcm.7545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/11/2016] [Accepted: 02/21/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Amiodarone is reported to cause hepato and pulmonary toxicity in humans, which has been envisaged to be due to formation of its reactive metabolites, essentially based on its structural similarity to benzbromarone, a drug withdrawn from the market due to reasons of similar hepatotoxicity. Therefore, the purpose of this study was to detect glutathione conjugates of amiodarone and its reactive diquinone metabolites in rat bile using mass spectrometry tools. METHODS Wistar rats were dosed orally with an amiodarone suspension and bile was collected via bile duct cannulation followed by solid-phase extraction, protein precipitation and centrifugation. Samples were analysed by liquid chromatography coupled with linear ion trap mass spectrometry using tandem mass and constant neutral loss scan in positive electrospray ionization mode. RESULTS Glutathione adducts of amiodarone and its reactive diquinone metabolites were identified and characterized with the characteristic neutral loss of 129 Da. Glucuronide conjugates of previously reported stable phase-1 metabolites were also observed. CONCLUSIONS This study confirmed generation of reactive metabolites of amiodarone for the first time, as was hypothesised earlier by various research groups. Also, the responsible toxicophore was identified to be a benzofuran moiety liable to form reactive diquinone species. However, the results need to be further confirmed in human subjects. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Keyur R Parmar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, 160 062, Punjab, India
| | | | - Saranjit Singh
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, 160 062, Punjab, India
| |
Collapse
|
20
|
Wu Q, Ning B, Xuan J, Ren Z, Guo L, Bryant MS. The role of CYP 3A4 and 1A1 in amiodarone-induced hepatocellular toxicity. Toxicol Lett 2016; 253:55-62. [PMID: 27113703 DOI: 10.1016/j.toxlet.2016.04.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/01/2016] [Accepted: 04/20/2016] [Indexed: 12/12/2022]
Abstract
Amiodarone is a widely used potent antiarrhythmic for the treatment of cardiac disease; however, its use is often discontinued due to numerous adverse effects, including hepatotoxicity. To investigate the role of drug metabolism in this liver toxicity, amiodarone and its major metabolite desethylamiodarone were incubated with HepG2 cells overexpressing a series of cytochrome P450 (CYP) isoforms. Significantly higher cytotoxicity of amiodarone was observed in HepG2 cells overexpressing CYP3A4 or CYP1A1, compared with that observed in empty vector transduced control cells. Further, higher levels of the more potent hepatotoxic metabolite desethylamiodarone were detected in CYP3A4 or CYP1A1 expressed cells. The CYP3A4 inhibitor ketoconazole and the CYP1A1 inhibitor α-naphthoflavone drastically inhibited the metabolism of amiodarone to desethylamiodarone. Along with the inhibition of CYP1A1 or CYP3A4, the cytotoxicity of amiodarone was significantly reduced. These data indicate that the metabolism of amiodarone to desethylamiodarone by CYP1A1 or CYP3A4 plays an important role in the hepatocellular toxicity of amiodarone.
Collapse
Affiliation(s)
- Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Baitang Ning
- Division of System Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Jiekun Xuan
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Zhen Ren
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| | - Matthew S Bryant
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA.
| |
Collapse
|
21
|
Multiple stage MS in analysis of plasma, serum, urine and in vitro samples relevant to clinical and forensic toxicology. Bioanalysis 2016; 8:457-81. [DOI: 10.4155/bio.16.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This paper reviews MS approaches applied to metabolism studies, structure elucidation and qualitative or quantitative screening of drugs (of abuse) and/or their metabolites. Applications in clinical and forensic toxicology were included using blood plasma or serum, urine, in vitro samples, liquids, solids or plant material. Techniques covered are liquid chromatography coupled to low-resolution and high-resolution multiple stage mass analyzers. Only PubMed listed studies published in English between January 2008 and January 2015 were considered. Approaches are discussed focusing on sample preparation and mass spectral settings. Comments on advantages and limitations of these techniques complete the review.
Collapse
|
22
|
Ladumor M, Tiwari S, Patil A, Bhavsar K, Jhajra S, Prasad B, Singh S. High-Resolution Mass Spectrometry in Metabolite Identification. APPLICATIONS OF TIME-OF-FLIGHT AND ORBITRAP MASS SPECTROMETRY IN ENVIRONMENTAL, FOOD, DOPING, AND FORENSIC ANALYSIS 2016. [DOI: 10.1016/bs.coac.2016.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Jhajra S, Singh S. Identification of stable and reactive metabolite(s) of nelfinavir in human liver microsomes and rCYP3A4. J Pharm Biomed Anal 2016; 118:214-227. [DOI: 10.1016/j.jpba.2015.10.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/14/2015] [Accepted: 10/17/2015] [Indexed: 11/25/2022]
|
24
|
McDonald MG, Au NT, Rettie AE. P450-Based Drug-Drug Interactions of Amiodarone and its Metabolites: Diversity of Inhibitory Mechanisms. Drug Metab Dispos 2015; 43:1661-9. [PMID: 26296708 DOI: 10.1124/dmd.115.065623] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/20/2015] [Indexed: 12/18/2022] Open
Abstract
In this study, IC50 shift and time-dependent inhibition (TDI) experiments were carried out to measure the ability of amiodarone (AMIO), and its circulating human metabolites, to reversibly and irreversibly inhibit CYP1A2, CYP2C9, CYP2D6, and CYP3A4 activities in human liver microsomes. The [I]u/Ki,u values were calculated and used to predict in vivo AMIO drug-drug interactions (DDIs) for pharmaceuticals metabolized by these four enzymes. Based on these values, the minor metabolite N,N-didesethylamiodarone (DDEA) is predicted to be the major cause of DDIs with xenobiotics primarily metabolized by CYP1A2, CYP2C9, or CYP3A4, while AMIO and its N-monodesethylamiodarone (MDEA) derivative are the most likely cause of interactions involving inhibition of CYP2D6 metabolism. AMIO drug interactions predicted from the reversible inhibition of the four P450 activities were found to be in good agreement with the magnitude of reported clinical DDIs with lidocaine, warfarin, metoprolol, and simvastatin. The TDI experiments showed DDEA to be a potent inactivator of CYP1A2 (KI = 0.46 μM, kinact = 0.030 minute(-1)), while MDEA was a moderate inactivator of both CYP2D6 (KI = 2.7 μM, kinact = 0.018 minute(-1)) and CYP3A4 (KI = 2.6 μM, kinact = 0.016 minute(-1)). For DDEA and MDEA, mechanism-based inactivation appears to occur through formation of a metabolic intermediate complex. Additional metabolic studies strongly suggest that CYP3A4 is the primary microsomal enzyme involved in the metabolism of AMIO to both MDEA and DDEA. In summary, these studies demonstrate both the diversity of inhibitory mechanisms with AMIO and the need to consider metabolites as the culprit in inhibitory P450-based DDIs.
Collapse
Affiliation(s)
- Matthew G McDonald
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington (M.G.M., N.T.A., A.E.R.)
| | - Nicholas T Au
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington (M.G.M., N.T.A., A.E.R.)
| | - Allan E Rettie
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington (M.G.M., N.T.A., A.E.R.)
| |
Collapse
|
25
|
Montes R, Rodríguez I, Casado J, López-Sabater M, Cela R. Determination of the cardiac drug amiodarone and its N-desethyl metabolite in sludge samples. J Chromatogr A 2015; 1394:62-70. [DOI: 10.1016/j.chroma.2015.03.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 12/22/2022]
|
26
|
Zhang K, Li S, Zheng W, Zhang L, Wang C, Wang X, Fei C, Xue F, Wang M. Identification of in vitro metabolites of a new anticoccidial drug nitromezuril using HepG2 cells, rat S9 and primary hepatocytes by liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:1723-1734. [PMID: 24975253 DOI: 10.1002/rcm.6953] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 05/15/2014] [Accepted: 05/21/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE Nitromezuril is a novel triazine compound possessing remarkable anticoccidial activity that could have possible future use in the prevention of coccidiosis; however, its metabolic characteristics have still not been revealed. METHODS In the present study, the in vitro metabolism of nitromezuril in HepG2 cells, rat S9 and primary hepatocytes was investigated using high-performance liquid chromatography with electrospray ionization tandem mass spectrometry. The structures of metabolites and their product ions were easily and reliably characterized based on the accurate MS(2) spectra and known structure of nitromezuril. RESULTS As expected, three metabolites (M1-M3) were detected in a HepG2 cells system, one metabolite was respectively detected and identified as M1 in rat S9 and M2 in rat primary hepatocytes. M1 and M2 were confirmed respectively based on comparing their retention times, full scan, product ion scan with available authentic standards and M3 was tentatively identified as hydroxyl compound of M2. CONCLUSIONS Pathways of nitromezuril were reported for the first time and no obvious species difference was shown. The proposed metabolic pathways of nitromezuril can be expected to play a key role in pharmacodynamics and food safety evaluations.
Collapse
Affiliation(s)
- Keyu Zhang
- Key Laboratory of Veterinary Drug Safety Evaluation and Residues Research, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|