1
|
Wang R, Wang Z, Lu H. Separation methods for system-wide profiling of protein terminome. Proteomics 2023; 23:e2100374. [PMID: 35997653 DOI: 10.1002/pmic.202100374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022]
Abstract
Protein N- and C-termini have specific biochemical properties and functions. They play vital roles in various biological processes, such as protein stability and localization. In addition, post-translational modifications and proteolytic processing generate different proteoforms at protein termini. In recent years, terminomics has attracted significant attention, and numerous strategies have been developed to achieve high-throughput and global terminomics analysis. This review summarizes the recent protein N-termini and C-termini enrichment methods and their application in different samples. We also look ahead further application of terminomics in profiling protease substrates and discovery of disease biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Rui Wang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Zhongjie Wang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Haojie Lu
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China.,Department of Chemistry and Key Laboratory of Glycoconjugates Research Ministry of Public Health, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Fang Z, Wanigasekara MSK, Yepremyan A, Lam B, Thapa P, Foss FW, Chowdhury SM. Mass Spectrometry-Cleavable Protein N-Terminal Tagging Strategy for System-Level Protease Activity Profiling. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:189-197. [PMID: 34928623 DOI: 10.1021/jasms.1c00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/14/2023]
Abstract
Proteolysis is one of the most important protein post-translational modifications (PTMs) that influences the functions, activities, and structures of nearly all proteins during their lifetime. To facilitate the targeted identification of low-abundant proteolytic products, we devised a strategy incorporating a novel biotinylated reagent PFP (pentafluorophenyl)-Rink-biotin to specifically target, enrich and identify proteolytic N-termini. Within the PFP-Rink-biotin reagent, a mass spectrometry (MS)-cleavable feature was designed to assist in the unambiguous confirmation of the enriched proteolytic N-termini. The proof-of-concept study was performed with multiple standard proteins whose N-termini were successfully modified, enriched and identified by a signature ion (SI) in the MS/MS fragmentation, along with the determination of N-terminal peptide sequences by multistage tandem MS of the complementary fragment generated after the cleavage of MS-cleavable bond. For large-scale application, the enrichment and identification of protein N-termini from Escherichia coli cells were demonstrated, facilitated by an in-house developed NTermFinder bioinformatics workflow. We believe this approach will be beneficial in improving the confidence of identifying proteolytic substrates in a native cellular environment.
Collapse
Affiliation(s)
- Zixiang Fang
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington Texas 76019, United States
| | - Maheshika S K Wanigasekara
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington Texas 76019, United States
| | - Akop Yepremyan
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington Texas 76019, United States
| | - Brandon Lam
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington Texas 76019, United States
| | - Pawan Thapa
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington Texas 76019, United States
| | - Frank W Foss
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington Texas 76019, United States
| | - Saiful M Chowdhury
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington Texas 76019, United States
| |
Collapse
|
3
|
Kaushal P, Lee C. N-terminomics - its past and recent advancements. J Proteomics 2020; 233:104089. [PMID: 33359939 DOI: 10.1016/j.jprot.2020.104089] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2020] [Revised: 07/22/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023]
Abstract
N-terminomics is a rapidly evolving branch of proteomics that encompasses the study of protein N-terminal sequence. A proteome-wide collection of such sequences has been widely used to understand the proteolytic cascades and in annotating the genome. Over the last two decades, various N-terminomic strategies have been developed for achieving high sensitivity, greater depth of coverage, and high-throughputness. We, in this review, cover how the field of N-terminomics has evolved to date, including discussion on various sample preparation and N-terminal peptide enrichment strategies. We also compare different N-terminomic methods and highlight their relative benefits and shortcomings in their implementation. In addition, an overview of the currently available bioinformatics tools and data analysis pipelines for the annotation of N-terminomic datasets is also included. SIGNIFICANCE: It has been recognized that proteins undergo several post-translational modifications (PTM), and a number of perturbed biological pathways are directly associated with modifications at the terminal sites of a protein. In this regard, N-terminomics can be applied to generate a proteome-wide landscape of mature N-terminal sequences, annotate their source of generation, and recognize their significance in the biological pathways. Besides, a system-wide study can be used to study complicated proteolytic machinery and protease cleavage patterns for potential therapeutic targets. Moreover, due to unprecedented improvements in the analytical methods and mass spectrometry instrumentation in recent times, the N-terminomic methodologies now offers an unparalleled ability to study proteoforms and their implications in clinical conditions. Such approaches can further be applied for the detection of low abundant proteoforms, annotation of non-canonical protein coding sites, identification of candidate disease biomarkers, and, last but not least, the discovery of novel drug targets.
Collapse
Affiliation(s)
- Prashant Kaushal
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, 26 Kyunghee-daero, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
4
|
Citrullination-Resistant LL-37 Is a Potent Antimicrobial Agent in the Inflammatory Environment High in Arginine Deiminase Activity. Int J Mol Sci 2020; 21:ijms21239126. [PMID: 33266231 PMCID: PMC7730452 DOI: 10.3390/ijms21239126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/14/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022] Open
Abstract
LL-37, the only member of the mammalian cathelicidin in humans, plays an essential role in innate immunity by killing pathogens and regulating the inflammatory response. However, at an inflammatory focus, arginine residues in LL-37 can be converted to citrulline via a reaction catalyzed by peptidyl-arginine deiminases (PAD2 and PAD4), which are expressed in neutrophils and are highly active during the formation of neutrophil extracellular traps (NETs). Citrullination impairs the bactericidal activity of LL-37 and abrogates its immunomodulatory functions. Therefore, we hypothesized that citrullination-resistant LL-37 variants would retain the functionality of the native peptide in the presence of PADs. To test this hypothesis, we synthetized LL-37 in which arginine residues were substituted by homoarginine (hArg-LL-37). Bactericidal activity of hArg-LL-37 was comparable with that of native LL-37, but neither treatment with PAD4 nor exposure to NETs affected the antibacterial and immunomodulatory activities of hArg-LL-37. Importantly, the susceptibilities of LL-37 and hArg-LL-37 to degradation by proteases did not significantly differ. Collectively, we demonstrated that citrullination-resistant hArg-LL-37 is an attractive lead compound for the generation of new agents to treat bacterial infections and other inflammatory diseases associated with enhanced PAD activity. Moreover, our results provide a proof-of-concept for synthesis of therapeutic peptides using homoarginine.
Collapse
|
5
|
Sun M, Liang Y, Li Y, Yang K, Zhao B, Yuan H, Li X, Zhang X, Liang Z, Shan Y, Zhang L, Zhang Y. Comprehensive Analysis of Protein N-Terminome by Guanidination of Terminal Amines. Anal Chem 2019; 92:567-572. [DOI: 10.1021/acs.analchem.9b04141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mingwei Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
- Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, Guangdong 510005, China
| | - Yu Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Yang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaiguang Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Baofeng Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Huiming Yuan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Xiao Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Xiaodan Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Yichu Shan
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R. & A. Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| |
Collapse
|
6
|
Mahbub MM, Chowdhury SM, Christensen SM. Globular domain structure and function of restriction-like-endonuclease LINEs: similarities to eukaryotic splicing factor Prp8. Mob DNA 2017; 8:16. [PMID: 29151899 PMCID: PMC5678591 DOI: 10.1186/s13100-017-0097-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/09/2017] [Accepted: 10/17/2017] [Indexed: 12/16/2022] Open
Abstract
Background R2 elements are a clade of early branching Long Interspersed Elements (LINEs). LINEs are retrotransposable elements whose replication can have profound effects on the genomes in which they reside. No crystal or EM structures exist for the reverse transcriptase (RT) and linker regions of LINEs. Results Using limited proteolysis as a probe for globular domain structure, we show that the protein encoded by the Bombyx mori R2 element has two major globular domains: (1) a small globular domain consisting of the N-terminal zinc finger and Myb motifs, and (2) a large globular domain consisting of the RT, linker, and type II restriction-like endonuclease (RLE). Further digestion of the large globular domain occurred within the RT. Mapping these RT cleavages onto an updated model of the R2Bm RT indicated that the thumb of the RT was largely protected from proteolytic cleavage. The crystal structure of the large globular domain of Prp8, a eukaryotic splicing factor, was a major template used in building the R2Bm RT model, particularly the thumb region. The large fragment of Prp8 consists not only of a RT similar to R2Bm, but also an RLE and a linker connecting the two regions. The linker sequences adjacent to the RLE in LINEs and Prp8 share a set of two important α-helices and a (presumptive) knuckle/ββα structural motif that are closely associated with the thumb. The RLEs of LINEs and Prp8 share a unique catalytic core residue spacing as well as other key residues. Conclusions The protein encoded by RLE LINEs consists of two major globular domains. The larger of the two globular domain contains the RT, linker, and RLE and is similar to the large fragment of the spliceosomal protein Prp8. The similarities are suggestive of possible common ancestry. Electronic supplementary material The online version of this article (10.1186/s13100-017-0097-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- M Murshida Mahbub
- Department of Biology, University of Texas at Arlington, 501 S. Nedderman Drive, Room 337, Arlington, TX 76010 USA
| | - Saiful M Chowdhury
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Room 130, Arlington, TX 76010 USA
| | - Shawn M Christensen
- Department of Biology, University of Texas at Arlington, 501 S. Nedderman Drive, Room 337, Arlington, TX 76010 USA
| |
Collapse
|
7
|
Castangia R, Hudson SR, Robinson HK, Flitsch SL, Thomas-Oates J, Routledge A. Fabrication and Application of Isotopically Labelled Gold Arrays for Multiplexed Peptide Analysis. Chembiochem 2016; 17:2007-2011. [PMID: 27581724 DOI: 10.1002/cbic.201600347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/17/2016] [Indexed: 11/07/2022]
Abstract
A new array-based technology for the simultaneous capture, chemical labelling and mass spectrometry analysis of peptides is presented. Isotopically labelled self-assembled monolayer (SAM) gold arrays are constructed and used simultaneously to capture and label a range of peptides. The array-immobilised, labelled peptides were released by MALDI ablation, analysed by MALDI mass spectrometry and readily identified as labelled peptides from their characteristic isotope pattern. This new solid-phase array platform has the advantage of minimal sample manipulation and is suitable for multiple analyses of single protein digests on a single MALDI target plate.
Collapse
Affiliation(s)
- Roberto Castangia
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Siân R Hudson
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Helen K Robinson
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Sabine L Flitsch
- Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Jane Thomas-Oates
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK. .,Centre of Excellence in Mass Spectrometry, University of York, Heslington, York, YO10 5DD, UK.
| | - Anne Routledge
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
8
|
Li L, Yan G, Zhang X. Laser-assisted proteolysis for accelerating and enhancing protein N-termini analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:1398-1402. [PMID: 27197032 DOI: 10.1002/rcm.7565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/03/2015] [Revised: 02/18/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
RATIONALE Targeted analysis of protein N-termini contributes to elucidating the starting sites and post-translational modifications of mature protein N-termini. Tryptic digestion is important in protein N-termini analysis, as well as in conventional bottom-up proteomics strategies. It is essential to explore a new proteolysis method for the enhancement of protein N-termini analysis. METHODS Laser-assisted proteolysis was compared with conventional overnight proteolysis. Four standard proteins were studied as models and analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. 100 pg of synthesized peptide was used as internal standard for comparison of N-terminus intensity. Laser-assisted proteolysis was demonstrated to accelerate and enhance N-termini analysis. A complex mouse liver proteome sample was used to validate the effect of laser-assisted proteolysis. RESULTS According to online database search, the number of matched peptides of four model proteins and the sequence coverage were comparable between the two proteolysis methods. Laser exposure time (40 s) could enhance the release of the N-terminus in model proteins. The number of identified N-termini in mouse liver was improved by 28.3% in the laser-assisted digest, compared to the conventional overnight digest. The time cost for digestion was shortened from overnight to 40 s. CONCLUSIONS Laser-assisted proteolysis was demonstrated to accelerate proteolysis and enhance N-termini analysis. If laser-assisted proteolysis was integrated into protein N-termini targeted methods, the performance of those methods should be improved. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lanting Li
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Guoquan Yan
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| |
Collapse
|
9
|
Ye J, Zhang Y, Huang L, Li Q, Huang J, Lu J, Li Y, Zhang X. An optimized guanidination method for large-scale proteomic studies. Proteomics 2016; 16:1837-46. [DOI: 10.1002/pmic.201500226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/16/2015] [Revised: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Juanying Ye
- State Key Laboratory of Genetic Engineering; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai P. R. China
| | - Yang Zhang
- State Key Laboratory of Genetic Engineering; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai P. R. China
| | - Lin Huang
- State Key Laboratory of Genetic Engineering; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai P. R. China
| | - Qingqing Li
- State Key Laboratory of Genetic Engineering; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai P. R. China
| | - Jingnan Huang
- State Key Laboratory of Genetic Engineering; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai P. R. China
| | - Jianan Lu
- State Key Laboratory of Genetic Engineering; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai P. R. China
| | - Yanhong Li
- State Key Laboratory of Genetic Engineering; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai P. R. China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering; Department of Biochemistry; School of Life Sciences; Fudan University; Shanghai P. R. China
| |
Collapse
|