1
|
Novel biomarkers for lysosomal storage disorders: Metabolomic and proteomic approaches. Clin Chim Acta 2020; 509:195-209. [PMID: 32561345 DOI: 10.1016/j.cca.2020.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022]
Abstract
Lysosomal storage disorders (LSDs) are characterized by the accumulation of specific disease substrates inside the lysosomes of various cells, eventually leading to the deterioration of cellular function and multisystem organ damage. With the continuous discovery and validation of novel and advanced therapies for most LSDs, there is an urgent need to discover more versatile and clinically relevant biomarkers. The utility of these biomarkers should ideally extend beyond the screening and diagnosis of LSDs to the evaluation of disease severity and monitoring of therapy. Metabolomic and proteomic approaches provide the means to the discovery and validation of such novel biomarkers. This is achieved mainly through the application of various mass spectrometric techniques to common and easily accessible biological samples, such as plasma, urine and dried blood spots. In this review, we tried to summarize the complexity of the lysosomal disorders phenotypes, their current diagnostic and therapeutic approaches, the various techniques supporting metabolomic and proteomic studies and finally we tried to explore the newly discovered biomarkers for most LSDs and their reported clinical values.
Collapse
|
2
|
Piraud M, Pettazzoni M, Lavoie P, Ruet S, Pagan C, Cheillan D, Latour P, Vianey-Saban C, Auray-Blais C, Froissart R. Contribution of tandem mass spectrometry to the diagnosis of lysosomal storage disorders. J Inherit Metab Dis 2018; 41:457-477. [PMID: 29556840 DOI: 10.1007/s10545-017-0126-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/25/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
Abstract
Tandem mass spectrometry (MS/MS) is a highly sensitive and specific technique. Thanks to the development of triple quadrupole analyzers, it is becoming more widely used in laboratories working in the field of inborn errors of metabolism. We review here the state of the art of this technique applied to the diagnosis of lysosomal storage disorders (LSDs) and how MS/MS has changed the diagnostic rationale in recent years. This fine technology brings more sensitive, specific, and reliable methods than the previous biochemical ones for the analysis of urinary glycosaminoglycans, oligosaccharides, and sialic acid. In sphingolipidoses, the quantification of urinary sphingolipids (globotriaosylceramide, sulfatides) is possible. The measurement of new plasmatic biomarkers such as oxysterols, bile acids, and lysosphingolipids allows the screening of many sphingolipidoses and related disorders (Niemann-Pick type C), replacing tedious biochemical techniques. Applied to amniotic fluid, a more reliable prenatal diagnosis or screening of LSDs is now available for fetuses presenting with antenatal manifestations. Applied to enzyme measurements, it allows high throughput assays for the screening of large populations, even newborn screening. The advent of this new method can modify the diagnostic rationale behind LSDs.
Collapse
Affiliation(s)
- Monique Piraud
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France.
| | - Magali Pettazzoni
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Pamela Lavoie
- Service de Génétique Médicale, Département de Pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Séverine Ruet
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Cécile Pagan
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - David Cheillan
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Philippe Latour
- Unité de Neurogénétique Moléculaire, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, Lyon, France
| | - Christine Vianey-Saban
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| | - Christiane Auray-Blais
- Service de Génétique Médicale, Département de Pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Roseline Froissart
- Unité Maladies Héréditaires du Métabolisme, Service de Biochimie et Biologie Moléculaire Grand Est, Centre de Biologie et de Pathologie Est, Hospices Civils de Lyon, 59 boulevard Pinel, 69677, Bron cedex, France
| |
Collapse
|
3
|
Jirásko R, Holčapek M, Khalikova M, Vrána D, Študent V, Prouzová Z, Melichar B. MALDI Orbitrap Mass Spectrometry Profiling of Dysregulated Sulfoglycosphingolipids in Renal Cell Carcinoma Tissues. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1562-1574. [PMID: 28361385 DOI: 10.1007/s13361-017-1644-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 06/07/2023]
Abstract
Matrix-assisted laser desorption/ionization coupled with Orbitrap mass spectrometry (MALDI-Orbitrap-MS) is used for the clinical study of patients with renal cell carcinoma (RCC), as the most common type of kidney cancer. Significant changes in sulfoglycosphingolipid abundances between tumor and autologous normal kidney tissues are observed. First, sulfoglycosphingolipid species in studied RCC samples are identified using high mass accuracy full scan and tandem mass spectra. Subsequently, optimization, method validation, and statistical evaluation of MALDI-MS data for 158 tissues of 80 patients are discussed. More than 120 sulfoglycosphingolipids containing one to five hexosyl units are identified in human RCC samples based on the systematic study of their fragmentation behavior. Many of them are recorded here for the first time. Multivariate data analysis (MDA) methods, i.e., unsupervised principal component analysis (PCA) and supervised orthogonal partial least square discriminant analysis (OPLS-DA), are used for the visualization of differences between normal and tumor samples to reveal the most up- and downregulated lipids in tumor tissues. Obtained results are closely correlated with MALDI mass spectrometry imaging (MSI) and histologic staining. Important steps of the present MALDI-Orbitrap-MS approach are also discussed, such as the selection of best matrix, correct normalization, validation for semiquantitative study, and problems with possible isobaric interferences on closed masses in full scan mass spectra. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Robert Jirásko
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic.
| | - Michal Holčapek
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
| | - Maria Khalikova
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210, Pardubice, Czech Republic
| | - David Vrána
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University, I.P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Vladimír Študent
- Department of Urology, Faculty of Medicine and Dentistry, Palacký University, I.P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Zuzana Prouzová
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacký University, I.P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine and Dentistry, Palacký University, I.P. Pavlova 6, 775 20, Olomouc, Czech Republic
| |
Collapse
|
4
|
Blomqvist M, Borén J, Zetterberg H, Blennow K, Månsson JE, Ståhlman M. High-throughput analysis of sulfatides in cerebrospinal fluid using automated extraction and UPLC-MS/MS. J Lipid Res 2017; 58:1482-1489. [PMID: 28550076 DOI: 10.1194/jlr.d076588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/23/2017] [Indexed: 01/08/2023] Open
Abstract
Sulfatides (STs) are a group of glycosphingolipids that are highly expressed in brain. Due to their importance for normal brain function and their potential involvement in neurological diseases, development of accurate and sensitive methods for their determination is needed. Here we describe a high-throughput oriented and quantitative method for the determination of STs in cerebrospinal fluid (CSF). The STs were extracted using a fully automated liquid/liquid extraction method and quantified using ultra-performance liquid chromatography coupled to tandem mass spectrometry. With the high sensitivity of the developed method, quantification of 20 ST species from only 100 μl of CSF was performed. Validation of the method showed that the STs were extracted with high recovery (90%) and could be determined with low inter- and intra-day variation. Our method was applied to a patient cohort of subjects with an Alzheimer's disease biomarker profile. Although the total ST levels were unaltered compared with an age-matched control group, we show that the ratio of hydroxylated/nonhydroxylated STs was increased in the patient cohort. In conclusion, we believe that the fast, sensitive, and accurate method described in this study is a powerful new tool for the determination of STs in clinical as well as preclinical settings.
Collapse
Affiliation(s)
- Maria Blomqvist
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Jan-Eric Månsson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
5
|
Quantification of plasma sulfatides by mass spectrometry: Utility for metachromatic leukodystrophy. Anal Chim Acta 2016; 955:79-85. [PMID: 28088283 DOI: 10.1016/j.aca.2016.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/17/2016] [Accepted: 12/01/2016] [Indexed: 11/22/2022]
Abstract
Impaired sulfatide catabolism is the primary biochemical insult in patients with the inherited neurodegenerative disease, metachromatic leukodystrophy (MLD), and sulfatide elevation in body fluids is useful in the diagnostic setting. Here we used mass spectrometry to quantify fourteen species of sulfatide, in addition to the deacetylated derivative, lyso-sulfatide, using high pressure liquid chromatography-electrospray ionisation-tandem mass spectrometry in both positive and negative ion mode. A single phase extraction of 0.01 mL of MLD plasma identified all 14 sulfatide species in the positive ion mode but none in the negative ion mode. Interrogation of seven major and seven hydroxylated molecular species, as well as lyso-sulfatide, identified the C18 isoform as the most informative for MLD. The C18 produced a linear response and was below the limit of quantification (<10 pmol mL-1) in control plasma with concentrations in MLD plasma ranging from 12 to 196 pmol mL-1. Serial plasma samples from an MLD patient post-therapeutic bone marrow transplant proved similar to non-disease controls with C18 sulfatide concentrations below the limit of quantification, as did samples from three individuals with an arylsulfatase A pseudodeficiency - a population variant which appears deficient upon enzymatic assay, without manifestation of disease. These findings emphasise the utility of the C18 sulfatide species for the diagnosis of MLD and biochemical monitoring of MLD patients. Extension of this approach to a newborn screening card correctly identified an MLD patient at birth with elevated C18 sulfatide at levels almost double that present in the newborn card from his unaffected sibling, suggesting the methodology may have applicability for newborn screening.
Collapse
|
6
|
Pintado-Sierra M, García-Álvarez I, Bribián A, Medina-Rodríguez EM, Lebrón-Aguilar R, Garrido L, de Castro F, Fernández-Mayoralas A, Quintanilla-López JE. A comprehensive profiling of sulfatides in myelin from mouse brain using liquid chromatography coupled to high-resolution accurate tandem mass spectrometry. Anal Chim Acta 2016; 951:89-98. [PMID: 27998489 DOI: 10.1016/j.aca.2016.11.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/25/2016] [Accepted: 11/28/2016] [Indexed: 11/17/2022]
Abstract
Sulfatides are sulfoglycolipids found in the myelin sheath. The composition ratio of sulfatide molecular species changes with age, and it has also been associated with the pathogenesis of various human central nervous system diseases. However, profiling sulfatides in biological samples is difficult, due to the great variety of molecular species. In this work, a new, easy and reliable liquid chromatography-electrospray tandem mass spectrometry (LC-ESI(+)-MS/MS) method has been developed to profile sulfatide content in biological samples of myelin. The 'wrong-way-round' ionization effect has been described for this type of molecules for the first time, making it possible to correctly identify as many as 37 different sulfatides in mouse brain myelin samples, including molecules with different fatty acid chain lengths and varying degrees of unsaturation and hydroxylation. A chemometric analysis of their relative abundances showed that the main difference among individuals of different ages was the content of sulfatides with odd-numbered fatty acid chains, in addition to hydroxylated species.
Collapse
Affiliation(s)
- M Pintado-Sierra
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - I García-Álvarez
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain; Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca "La Peraleda", 45071, Toledo, Spain
| | - A Bribián
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca "La Peraleda", 45071, Toledo, Spain; Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal (CSIC), Doctor Arce 37, 28002, Madrid, Spain
| | - E M Medina-Rodríguez
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca "La Peraleda", 45071, Toledo, Spain
| | - R Lebrón-Aguilar
- Instituto de Química-Física 'Rocasolano' (CSIC), Serrano 119, 28006, Madrid, Spain
| | - L Garrido
- Instituto de Ciencia y Tecnología de Polímeros (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | - F de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca "La Peraleda", 45071, Toledo, Spain; Grupo de Neurobiología del Desarrollo-GNDe, Instituto Cajal (CSIC), Doctor Arce 37, 28002, Madrid, Spain
| | - A Fernández-Mayoralas
- Instituto de Química Orgánica General (CSIC), Juan de la Cierva 3, 28006, Madrid, Spain
| | | |
Collapse
|
7
|
Kuchař L, Asfaw B, Rybová J, Ledvinová J. Tandem Mass Spectrometry of Sphingolipids: Applications for Diagnosis of Sphingolipidoses. Adv Clin Chem 2016; 77:177-219. [PMID: 27717417 DOI: 10.1016/bs.acc.2016.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years, mass spectrometry (MS) has become the dominant technology in lipidomic analysis. It is widely used in diagnosis and research of lipid metabolism disorders including those characterized by impairment of lysosomal functions and storage of nondegraded-degraded substrates. These rare diseases, which include sphingolipidoses, have severe and often fatal clinical consequences. Modern MS methods have contributed significantly to achieve a definitive diagnosis, which is essential in clinical practice to begin properly targeted patient care. Here we summarize MS and tandem MS methods used for qualitative and quantitative analysis of sphingolipids (SL) relative to the diagnostic process for sphingolipidoses and studies focusing on alterations in cell functions due to these disorders. This review covers the following topics: Tandem MS is sensitive and robust in determining the composition of sphingolipid classes in various biological materials. Its ability to establish SL metabolomic profiles using MS bench-top analyzers, significantly benefits the first stages of a diagnosis as well as metabolic studies of these disorders. It can thus contribute to a better understanding of the biological significance of SL.
Collapse
Affiliation(s)
- L Kuchař
- Charles University in Prague and General University Hospital, Prague, Czech Republic.
| | - B Asfaw
- Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - J Rybová
- Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - J Ledvinová
- Charles University in Prague and General University Hospital, Prague, Czech Republic.
| |
Collapse
|
8
|
Moyano AL, Li G, Boullerne AI, Feinstein DL, Hartman E, Skias D, Balavanov R, Breemen RB, Bongarzone ER, Månsson J, Givogri MI. Sulfatides in extracellular vesicles isolated from plasma of multiple sclerosis patients. J Neurosci Res 2016; 94:1579-1587. [DOI: 10.1002/jnr.23899] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/14/2016] [Accepted: 08/02/2016] [Indexed: 01/16/2023]
Affiliation(s)
- Ana Lis Moyano
- Department of Anatomy and Cell Biology, College of MedicineUniversity of Illinois at ChicagoChicago Illinois
| | - Guannan Li
- Department of Medical Chemistry and Pharmacognosy, College of PharmacyUniversity of Illinois at ChicagoChicago Illinois
| | - Anne I. Boullerne
- Department of Anesthesiology, College of MedicineUniversity of Illinois at ChicagoChicago Illinois
| | - Douglas L. Feinstein
- Department of Anesthesiology, College of MedicineUniversity of Illinois at ChicagoChicago Illinois
- Department of Veterans AffairsJesse Brown VA Medical CenterChicago Illinois
| | - Elizabeth Hartman
- Center for Neurosciences, Orthopedics and Spine, PC in Dakota Dunes South Dakota
| | - Demetrios Skias
- Neurology and Rehabilitation MedicineUniversity of Illinois at ChicagoChicago Illinois
| | - Roumen Balavanov
- Department of NeurologyRush University Medical CenterChicago Illinois
| | - Richard B. Breemen
- Department of Medical Chemistry and Pharmacognosy, College of PharmacyUniversity of Illinois at ChicagoChicago Illinois
| | - Ernesto R. Bongarzone
- Department of Anatomy and Cell Biology, College of MedicineUniversity of Illinois at ChicagoChicago Illinois
| | - Jan‐Eric Månsson
- Institute of Clinical ChemistrySahlgrenska Academy, University of GothenburgGothenburg Sweden
| | - Maria I. Givogri
- Department of Anatomy and Cell Biology, College of MedicineUniversity of Illinois at ChicagoChicago Illinois
| |
Collapse
|
9
|
Spacil Z, Babu Kumar A, Liao HC, Auray-Blais C, Stark S, Suhr TR, Scott CR, Turecek F, Gelb MH. Sulfatide Analysis by Mass Spectrometry for Screening of Metachromatic Leukodystrophy in Dried Blood and Urine Samples. Clin Chem 2015; 62:279-86. [PMID: 26585924 DOI: 10.1373/clinchem.2015.245159] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/05/2015] [Indexed: 11/06/2022]
Abstract
BACKGROUND Metachromatic leukodystrophy (MLD) is an autosomal recessive disorder caused by deficiency in arylsulfatase A activity, leading to accumulation of sulfatide substrates. Diagnostic and monitoring procedures include demonstration of reduced arylsulfatase A activity in peripheral blood leukocytes or detection of sulfatides in urine. However, the development of a screening test is challenging because of instability of the enzyme in dried blood spots (DBS), the widespread occurrence of pseudodeficiency alleles, and the lack of available urine samples from newborn screening programs. METHODS We measured individual sulfatide profiles in DBS and dried urine spots (DUS) from MLD patients with LC-MS/MS to identify markers with the discriminatory power to differentiate affected individuals from controls. We also developed a method for converting all sulfatide molecular species into a single species, allowing quantification in positive-ion mode upon derivatization. RESULTS In DBS from MLD patients, we found up to 23.2-fold and 5.1-fold differences in total sulfatide concentrations for early- and late-onset MLD, respectively, compared with controls and pseudodeficiencies. Corresponding DUS revealed up to 164-fold and 78-fold differences for early- and late-onset MLD patient samples compared with controls. The use of sulfatides converted to a single species simplified the analysis and increased detection sensitivity in positive-ion mode, providing a second option for sulfatide analysis. CONCLUSIONS This study of sulfatides in DBS and DUS suggests the feasibility of the mass spectrometry method for newborn screening of MLD and sets the stage for a larger-scale newborn screening pilot study.
Collapse
Affiliation(s)
| | | | | | - Christiane Auray-Blais
- Clinical Research Center, Centre Hospitalier Universitaire de Sherbrooke, and Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Samantha Stark
- National Referral Laboratory, Genetics and Molecular Pathology, South Australia Pathology, Women's and Children's Hospital, Adelaide, Australia
| | | | | | | | - Michael H Gelb
- Department of Chemistry, Department of Biochemistry, University of Washington, Seattle, WA;
| |
Collapse
|
10
|
Cesani M, Lorioli L, Grossi S, Amico G, Fumagalli F, Spiga I, Filocamo M, Biffi A. Mutation Update ofARSAandPSAPGenes Causing Metachromatic Leukodystrophy. Hum Mutat 2015; 37:16-27. [DOI: 10.1002/humu.22919] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/08/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Martina Cesani
- San Raffaele Telethon Institute for Gene Therapy; Division of Regenerative Medicine; Stem Cells and Gene Therapy; San Raffaele Scientific Institute; Milan Italy
| | - Laura Lorioli
- San Raffaele Telethon Institute for Gene Therapy; Division of Regenerative Medicine; Stem Cells and Gene Therapy; San Raffaele Scientific Institute; Milan Italy
- Vita-Salute San Raffaele University; Milan Italy
| | - Serena Grossi
- Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche; Istituto G. Gaslini; Genova Italy
| | - Giulia Amico
- Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche; Istituto G. Gaslini; Genova Italy
| | - Francesca Fumagalli
- San Raffaele Telethon Institute for Gene Therapy; Division of Regenerative Medicine; Stem Cells and Gene Therapy; San Raffaele Scientific Institute; Milan Italy
- Neurology Department; Division of Neuroscience; San Raffaele Scientific Institute; Milan Italy
| | - Ivana Spiga
- Clinical Molecular Biology Laboratory; San Raffaele Hospital; Milan Italy
| | - Mirella Filocamo
- Centro di Diagnostica Genetica e Biochimica delle Malattie Metaboliche; Istituto G. Gaslini; Genova Italy
| | - Alessandra Biffi
- San Raffaele Telethon Institute for Gene Therapy; Division of Regenerative Medicine; Stem Cells and Gene Therapy; San Raffaele Scientific Institute; Milan Italy
| |
Collapse
|
11
|
|
12
|
Han M, Jun SH, Lee YJ, Eun BL, Lee SJ, Seong MW, Park SS, Song SH, Park HD, Song J. Biochemical and Genetic Analysis of Seven Korean Individuals With Suspected Metachromatic Leukodystrophy. Ann Lab Med 2015; 35:458-62. [PMID: 26131420 PMCID: PMC4446587 DOI: 10.3343/alm.2015.35.4.458] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/19/2015] [Accepted: 04/25/2015] [Indexed: 01/05/2023] Open
Abstract
Metachromatic leukodystrophy (MLD) is an autosomal recessive disease caused by a deficiency in arylsulfatase A (ARSA). However, decreased ARSA activity is also observed in pseudodeficiency (PD). To distinguish between MLD and PD, we performed gene mutation and sulfatide analyses by using dried blood spots (DBSs) from seven Korean individuals who underwent an analysis of ARSA activity. DNA was extracted from DBSs, and PCR-direct sequencing of ARSA was performed. The cDNA obtained was analyzed to confirm a novel mutation. Of the seven subjects, three were confirmed as having MLD, one was confirmed as having MLD-PD, one was confirmed as having PD, and the remaining two were obligate heterozygotes. We verified the novel pathogenic variant c.1107+1delG by performing familial and cDNA analyses. Sulfatide concentrations in DBSs were analyzed and were quantified by using ultra-performance liquid chromatography and tandem mass spectrometry, respectively. Total sulfatide concentration was inversely correlated with ARSA activity (Spearman's coefficient of rank correlation, P=0.929, P=0.0025). The results of this mutational and biochemical study on MLD will increase our understanding of the genetic characteristics of MLD in Koreans.
Collapse
Affiliation(s)
- Minje Han
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea. ; Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sun-Hee Jun
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yun-Jin Lee
- Department of Pediatrics, Pusan National University Children's Hospital, Pusan National University School of Medicine, Yangsan, Korea
| | - Baik-Lin Eun
- Department of Pediatrics, Korea University College of Medicine, Seoul, Korea
| | - Seung Jun Lee
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea. ; Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea. ; Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea. ; Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Sang Hoon Song
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea. ; Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hyung-Doo Park
- Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Junghan Song
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea. ; Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
13
|
Mirzaian M, Kramer G, Poorthuis BJHM. Quantification of sulfatides and lysosulfatides in tissues and body fluids by liquid chromatography-tandem mass spectrometry. J Lipid Res 2015; 56:936-43. [PMID: 25632048 DOI: 10.1194/jlr.m057232] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Sulfatides are found in brain as components of myelin, oligodendrocytes, and neurons but are also present in various visceral tissues. Metachromatic leukodystrophy (MLD) is an inherited lysosomal storage disorder caused by a deficiency of arylsulfatase A, leading to severe white matter disease due to the accumulation of sulfatides and lysosulfatides. To study the physiological role of sulfatides, accessible and sensitive quantitative methods are required. We developed a sensitive LC/MS/MS method to quantify total sulfatide and lysosulfatide content as well as individual molecular species in urine and plasma from MLD patients and plasma and tissues from an MLD mouse model. Our results demonstrate that the method can quantify a wide range of sulfatide concentrations and can be used to quantify total sulfatide content and levels of individual molecular species of sulfatides in tissues, cells, and body fluids. Even though plasma sulfatides and lysosulfatides would seem attractive candidate biomarkers that could possibly correlate with the severity of MLD and be of use to monitor the effects of therapeutic intervention, our results indicate that it is unlikely that the determination of these storage products in plasma will be useful in this respect.
Collapse
Affiliation(s)
- Mina Mirzaian
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Gertjan Kramer
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| | - Ben J H M Poorthuis
- Department of Medical Biochemistry, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Moyano AL, Li G, Lopez-Rosas A, Månsson JE, van Breemen RB, Givogri MI. Distribution of C16:0, C18:0, C24:1, and C24:0 sulfatides in central nervous system lipid rafts by quantitative ultra-high-pressure liquid chromatography tandem mass spectrometry. Anal Biochem 2014; 467:31-9. [PMID: 25205652 DOI: 10.1016/j.ab.2014.08.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 08/26/2014] [Indexed: 01/18/2023]
Abstract
Sulfated galactosylceramides (sulfatides) are glycosphingolipids associated with cholesterol- and sphingolipid-enriched membrane microdomains (lipid rafts) and are highly expressed in brain tissue. Although it is known that sulfatide species show heterogeneity in their fatty acid acyl group composition throughout brain development, their lipid raft distribution and biological relevance is poorly understood. We validated a fast and sensitive ultra-high-pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method to measure developmentally regulated sulfatide species (C16:0, C18:0, C24:1, and C24:0) in central nervous system (CNS) lipid rafts isolated without using detergent. Our UHPLC-MS/MS assay showed good accuracy and precision with a linear range of 5 to 1,000 nM for C18:0 and C24:1 sulfatides and 10 to 1,000 nM for C16:0 and C24:0 sulfatides. We applied this quantitative analysis to detergent-free lipid rafts isolated from wild-type mice and arylsulfatase A-deficient (ASA knockout) mice that accumulate sulfatides. All four sulfatide species were more abundant in raft membranes than in non-raft membranes, with a significant increase in lipid rafts isolated from ASA knockout mice. This is the first description of an analytical method to study these sulfatide species in raft and non-raft membranes and has the potential to be applied to preparations from other tissues.
Collapse
Affiliation(s)
- Ana Lis Moyano
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Guannan Li
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Aurora Lopez-Rosas
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jan-Eric Månsson
- Department of Clinical Chemistry, The Sahlgrenska Academy, University of Gothenburg, SE-413 45 Gothenburg, Sweden
| | - Richard B van Breemen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Maria Irene Givogri
- Department of Anatomy and Cell Biology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|