1
|
Pan W, Ji Y, Qiu J, Wang G, Tang Z, Li A. Comparative study on the esterification of gymnodimine in different shellfish exposed to the dissolved toxin in seawater. HARMFUL ALGAE 2022; 115:102233. [PMID: 35623689 DOI: 10.1016/j.hal.2022.102233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 06/15/2023]
Abstract
Some lipophilic phycotoxins dissolved in seawater can be accumulated by bivalves via the filtering process. To explore the relationship between the bioaccumulation of gymnodimine-A (GYM-A) and free fatty acids (FFAs) of shellfish, three species of bivalves (venus clam Meretrix meretrix, mussel Mytilus galloprovincialis, and ark shell Anadara kagoshimensis) were exposed to dissolved GYM-A for 7 days in the same seawater system. Results indicated that GYM-A can be accumulated by these bivalves from the dissolved phase and esterified with FFAs reaching over 90% in most tissues of bivalves. Gymnodimine-A and its esters mainly distributed in the gills of shellfish, and the highest concentration of toxins occurred in mussel, followed by ark shell and venus clam. Similar percent of different fatty acid esters occurred in the experimental shellfish, in which the C16:0, C17:0, C18:0, C18:1, C20:1, C20:2, C22:2, and C22:6-GYM-A esters were the main metabolites of GYM-A. The binding capacity of fatty acids and GYM-A varied in different FFAs, which can explain why the C20:1-GYM-A ester dominated the ester profile while C16:0 was the most abundant fatty acid in all samples. Comparing with the FFA profile of shellfish in the control groups, overexpression of some FFAs occurred in the tissues of shellfish exposed to GYM-A in the experimental groups, which suggested that biosynthesis of FFAs was affected by the accumulation and metabolism of GYM-A in bivalves. Multiple fatty acids including some valuably nutritional FFAs such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were consumed in the esterification metabolism of GYM-A, which hinted that the lipid metabolism and nutritional quality of shellfish affected by the contamination of GYMs should be explored and assessed in future works.
Collapse
Affiliation(s)
- Wanyu Pan
- College of Environmental Science and Engineering, Ocean University of China, No 238, Songling Road, Qingdao 266100, China
| | - Ying Ji
- College of Environmental Science and Engineering, Ocean University of China, No 238, Songling Road, Qingdao 266100, China
| | - Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, No 238, Songling Road, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Guixiang Wang
- College of Environmental Science and Engineering, Ocean University of China, No 238, Songling Road, Qingdao 266100, China
| | - Zhixuan Tang
- College of Environmental Science and Engineering, Ocean University of China, No 238, Songling Road, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, No 238, Songling Road, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
2
|
Mudge EM, Miles CO, Hardstaff WR, McCarron P. Fatty acid esters of azaspiracids identified in mussels ( Mytilus edulis) using liquid chromatography-high resolution mass spectrometry. Toxicon X 2020; 8:100059. [PMID: 33073234 PMCID: PMC7549145 DOI: 10.1016/j.toxcx.2020.100059] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/25/2020] [Accepted: 09/25/2020] [Indexed: 12/02/2022] Open
Abstract
Azaspiracids (AZAs) are lipophilic polyether toxins produced by Azadinium and Amphidoma species of marine microalgae. The main dinoflagellate precursors AZA1 and AZA2 are metabolized by shellfish to produce an array of AZA analogues. Many marine toxins undergo fatty acid esterification in shellfish, therefore mussel tissues contaminated with AZAs were screened for intact fatty acid esters of AZAs using liquid chromatography-high resolution mass spectrometry. Acyl esters were primarily observed for AZAs containing hydroxy groups at C-3 with 3-O-palmitoylAZA4 identified as the most abundant acyl ester, while other fatty acid esters including 18:1, 16:1, 17:0, 20:2 and 18:0 acyl esters were detected. The structures of these acyl derivatives were determined through LC-MS/MS experiments, and supported by periodate cleavage reactions and semi-synthesis of palmitate esters of the AZAs. Esters of the hydroxy groups at C-20 or C-21 were not observed in mussel tissue. The relative proportion of the most abundant AZA ester was less than 3% of the sum of the major free AZA analogues. These findings reveal an additional metabolic pathway for AZAs in shellfish. Fatty acid esters of azaspiracids were identified in mussels (Mytilus edulis). Fatty acid esters of azaspiracids with hydroxy groups at C-3 were primarily observed. Fatty acid esters of regulated azaspiracids (AZA1, 2, −3) were absent. Structures were determined with LC-HRMS and confirmed by semi-synthesis of palmitate esters and periodate cleavage. This work reveals an additional metabolic pathway for azaspiracids in shellfish.
Collapse
|
3
|
Ayala-Cabrera JF, Santos FJ, Moyano E. Fragmentation studies of neutral per- and polyfluoroalkyl substances by atmospheric pressure ionization-multiple-stage mass spectrometry. Anal Bioanal Chem 2019; 411:7357-7373. [PMID: 31659376 DOI: 10.1007/s00216-019-02150-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 11/25/2022]
Abstract
The establishment of fragmentation pathways has a great interest in the identification of new or unknown related compounds present in complex samples. On that way, tentative fragmentation pathways for the ions generated by atmospheric pressure ionization of neutral per- and polyfluorinated alkyl substances (PFASs) have been proposed in this work. Electrospray (ESI), atmospheric pressure chemical ionization (APCI) and photoionization (APPI) were evaluated using mobile phases and source conditions that enhance the ionization efficiency of ions generated. A hybrid mass spectrometer consisting of a linear ion trap and an Orbitrap was used to combine the information of both multiple-stage mass spectrometry (MSn) and mass accuracy measurements to characterize and establish the genealogical relationship between the product ions observed. The ionization mechanisms to generate ions such as [M-H]-, [M]-•, and [M+O2]-• or the in-source collision-induced dissociation (CID) fragment ions in each API source are discussed in this study. In general, fluorotelomer olefins (FTOs) ionized in negative-ion APCI and APPI generated the molecular ion, while fluorotelomer alcohols (FTOHs) also provided the deprotonated molecule. Besides, fluorooctane sulfonamides (FOSAs) and sulfonamido-ethanols (FOSEs) led to the deprotonated molecule and in-source CID fragment ions, respectively. The fragmentation pathways from these precursor ions mainly involved initial α,β-eliminations of HF units and successive losses of CF2 units coming from the perfluorinated alkyl chain. Moreover, FTOHs and FOSEs showed a high tendency to generate adduct ions under negative-ion ESI and APPI conditions. The fragmentation study of these adduct ions has demonstrated a strong interaction with the attached moiety. Graphical abstract.
Collapse
Affiliation(s)
- Juan F Ayala-Cabrera
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Av. Diagonal 645, 08028, Barcelona, Spain
| | - F Javier Santos
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Av. Diagonal 645, 08028, Barcelona, Spain.,Research Institute in Water (IdRA), University of Barcelona, Montalegre 6, 08001, Barcelona, Spain
| | - Encarnación Moyano
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Av. Diagonal 645, 08028, Barcelona, Spain. .,Research Institute in Water (IdRA), University of Barcelona, Montalegre 6, 08001, Barcelona, Spain.
| |
Collapse
|
4
|
Accumulation of Dinophysis Toxins in Bivalve Molluscs. Toxins (Basel) 2018; 10:toxins10110453. [PMID: 30400229 PMCID: PMC6266557 DOI: 10.3390/toxins10110453] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 01/08/2023] Open
Abstract
Several species of the dinoflagellate genus Dinophysis produce toxins that accumulate in bivalves when they feed on populations of these organisms. The accumulated toxins can lead to intoxication in consumers of the affected bivalves. The risk of intoxication depends on the amount and toxic power of accumulated toxins. In this review, current knowledge on the main processes involved in toxin accumulation were compiled, including the mechanisms and regulation of toxin acquisition, digestion, biotransformation, compartmentalization, and toxin depuration. Finally, accumulation kinetics, some models to describe it, and some implications were also considered.
Collapse
|
5
|
Furumochi S, Onoda T, Cho Y, Fuwa H, Sasaki M, Yotsu-Yamashita M, Konoki K. Effect of carbon chain length in acyl coenzyme A on the efficiency of enzymatic transformation of okadaic acid to 7-O-acyl okadaic acid. Bioorg Med Chem Lett 2016; 26:2992-2996. [PMID: 27231127 DOI: 10.1016/j.bmcl.2016.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/25/2016] [Accepted: 05/10/2016] [Indexed: 11/17/2022]
Abstract
Okadaic acid (OA), a product of dinoflagellate Prorocentrum spp., is transformed into 7-O-acyl OA in various bivalve species. The structural transformation proceeds enzymatically in vitro in the presence of the microsomal fraction from the digestive gland of bivalves. We have been using LC-MS/MS to identify OA-transforming enzymes by detecting 7-O-acyl OA, also known as dinophysistoxin 3 (DTX3). However, an alternative assay for DTX3 is required because the OA-transforming enzyme is a membrane protein, and surfactants for solubilizing membrane proteins decrease the sensitivity of LC-MS/MS. The present study examined saturated fatty acyl CoAs with a carbon chain length of 10 (decanoyl), 12 (dodecanoyl), 14 (tetradecanoyl), 16 (hexadecanoyl) and 18 (octadecanoyl) as the substrate for the in vitro acylation reaction. Saturated fatty acyl CoAs with a carbon chain length of 14, 16 and 18 exhibited higher yields than those with a carbon chain length of 10 or 12. Acyl CoAs with carbon chain lengths from 14 to 18 and containing either a diene unit, an alkyne unit, or an azide unit in the carbon chain were synthesized and shown to provide the corresponding DTX3 with a yield comparable to that of hexadecanoyl CoA. The three functional units can be conjugated with fluorescent reagents and are applicable to the development of a novel assay for DTX3.
Collapse
Affiliation(s)
- Sachie Furumochi
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Tatsuya Onoda
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Yuko Cho
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Haruhiko Fuwa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Makoto Sasaki
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Mari Yotsu-Yamashita
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan
| | - Keiichi Konoki
- Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan.
| |
Collapse
|