1
|
“Omic” Approaches to Bacteria and Antibiotic Resistance Identification. Int J Mol Sci 2022; 23:ijms23179601. [PMID: 36077000 PMCID: PMC9455953 DOI: 10.3390/ijms23179601] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022] Open
Abstract
The quick and accurate identification of microorganisms and the study of resistance to antibiotics is crucial in the economic and industrial fields along with medicine. One of the fastest-growing identification methods is the spectrometric approach consisting in the matrix-assisted laser ionization/desorption using a time-of-flight analyzer (MALDI-TOF MS), which has many advantages over conventional methods for the determination of microorganisms presented. Thanks to the use of a multiomic approach in the MALDI-TOF MS analysis, it is possible to obtain a broad spectrum of data allowing the identification of microorganisms, understanding their interactions and the analysis of antibiotic resistance mechanisms. In addition, the literature data indicate the possibility of a significant reduction in the time of the sample preparation and analysis time, which will enable a faster initiation of the treatment of patients. However, it is still necessary to improve the process of identifying and supplementing the existing databases along with creating new ones. This review summarizes the use of “-omics” approaches in the MALDI TOF MS analysis, including in bacterial identification and antibiotic resistance mechanisms analysis.
Collapse
|
2
|
Salah H, Kolecka A, Rozaliyani A, Wahyuningsih R, Taj-Aldeen SJ, Boekhout T, Houbraken J. A New Filter Based Cultivation Approach for Improving Aspergillus Identification using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS). Mycopathologia 2022; 187:39-52. [PMID: 35006478 PMCID: PMC8807449 DOI: 10.1007/s11046-021-00603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022]
Abstract
Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) is widely used in clinical laboratories for routine identification of bacteria and yeasts. However, methodological difficulties are still apparent when applied to filamentous fungi. The liquid cultivation method recommended by Bruker Daltonics GmbH for identification of filamentous fungi by MALDI-TOF MS is labour intensive and time-consuming. In this study, growth of Aspergillus species on different (porous) surfaces was investigated with the aim to develop a more reliable, quicker and less laborious identification method using MALDI-TOF MS. Mycelial growth without sporulation mimicking liquid cultivation and reliable MALDI-TOF MS spectra were obtained when A. fumigatus strains were grown on and in between a polycarbonate membrane filter on Sabouraud dextrose agar. A database of in-house reference spectra was created by growing Aspergillus reference strains (mainly focusing on sections Fumigati and Flavi) under these selected conditions. A test set of 50 molecularly identified strains grown under different conditions was used to select the best growth condition for identification and to perform an initial validation of the in-house database. Based on these results, the cultivation method on top of a polycarbonate filter proved to be most successful for species identification. This method was therefore selected for the identification of two sets of clinical isolates that mainly consisted of Aspergilli (100 strains originating from Indonesia, 70 isolates from Qatar). The results showed that this cultivation method is reliable for identification of clinically relevant Aspergillus species, with 67% and 76% correct identification of strains from Indonesia and Qatar, respectively. In conclusion, cultivation of Aspergilli on top of a polycarbonate filter showed improved results compared to the liquid cultivation protocol recommended by Bruker in terms of percentage of correct identification, ease of MSP creation, time consumption, cost and labour intensity. This method can be reliably applied for identification of clinically important Aspergilli and has potential for identification of other filamentous fungi.
Collapse
Affiliation(s)
- Husam Salah
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar.,Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Anna Kolecka
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Anna Rozaliyani
- Department of Parasitology Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Retno Wahyuningsih
- Department of Parasitology Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.,Department of Parasitology Faculty of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia
| | - Saad J Taj-Aldeen
- Division of Microbiology, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar.,University of Babylon, Hilla, Iraq
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Topić Popović N, Kazazić SP, Bojanić K, Strunjak-Perović I, Čož-Rakovac R. Sample preparation and culture condition effects on MALDI-TOF MS identification of bacteria: A review. MASS SPECTROMETRY REVIEWS 2021. [PMID: 34642960 DOI: 10.1002/mas.21739] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is an excellent tool for bacterial identification. It allows high throughput, sensitive and specific applications in clinical diagnostics and environmental research. Currently, there is no optimal standardized protocol for sample preparation and culture conditions to profile bacteria. The performance of MALDI-TOF MS is affected by several variables, such as sample preparation, culture media and culture conditions, incubation time/growth stage, incubation temperature, high salt content, blood in the culture media, and others. This review thus aims to clarify why a uniformed protocol is not plausible, to assess the effects these factors have on MALDI-TOF MS identification score, and discuss possible optimizations for its methodology, in relation to specific bacterial representatives and strain requirements.
Collapse
Affiliation(s)
- Natalija Topić Popović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Snježana P Kazazić
- Laboratory for Mass Spectrometry and Functional Proteomics, Ruđer Bošković Institute, Zagreb, Croatia
| | - Krunoslav Bojanić
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ivančica Strunjak-Perović
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
- Centre of Excellence for Marine Bioprospecting-BioProCro, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
4
|
Application and Perspectives of MALDI-TOF Mass Spectrometry in Clinical Microbiology Laboratories. Microorganisms 2021; 9:microorganisms9071539. [PMID: 34361974 PMCID: PMC8307939 DOI: 10.3390/microorganisms9071539] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022] Open
Abstract
Early diagnosis of severe infections requires of a rapid and reliable diagnosis to initiate appropriate treatment, while avoiding unnecessary antimicrobial use and reducing associated morbidities and healthcare costs. It is a fact that conventional methods usually require more than 24–48 h to culture and profile bacterial species. Mass spectrometry (MS) is an analytical technique that has emerged as a powerful tool in clinical microbiology for identifying peptides and proteins, which makes it a promising tool for microbial identification. Matrix assisted laser desorption ionization–time of flight MS (MALDI–TOF MS) offers a cost- and time-effective alternative to conventional methods, such as bacterial culture and even 16S rRNA gene sequencing, for identifying viruses, bacteria and fungi and detecting virulence factors and mechanisms of resistance. This review provides an overview of the potential applications and perspectives of MS in clinical microbiology laboratories and proposes its use as a first-line method for microbial identification and diagnosis.
Collapse
|
5
|
A low-voltage paper spray ionization QTOF-MS method for the qualitative analysis of NPS in street drug blotter samples. Forensic Toxicol 2019. [DOI: 10.1007/s11419-019-00496-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
6
|
Horká M, Šalplachta J, Růžička F, Šlais K. Preparative and capillary isoelectric focusing for detection and identification of Aspergillus conidia in complex sample matrices. J Sep Sci 2018; 41:4203-4211. [PMID: 30194717 DOI: 10.1002/jssc.201800547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 02/06/2023]
Abstract
This study describes a new method for fast identification of highly hydrophobic conidia of Aspergillus species from both simple and complex matrices. The method is based on recently developed preparative isoelectric focusing in a cellulose-based separation medium which had to be modified with respect to the highly hydrophobic surface of the conidia. Although Aspergillus conidia are colored, their zones in the cellulose bed were indicated by colored isoelectric point markers. The isoelectric point values of Aspergillus conidia were determined by capillary isoelectric focusing. Preparative isoelectric focusing was successfully used for preconcentration of individual conidia of cultivated strains of Aspergillus niger, Aspergillus fumigatus, Aspergillus flavus, and Aspergillus parasiticus, and also for separation of the conidia in a mixture. Subsequently, red pepper powder and peanuts spiked with Aspergillus niger and Aspergillus flavus conidia, respectively, were used as complex matrices. The detection limit for identification of the conidia in these complex matrices is 104 conidia mL-1 . The presence of conidia in the focused zones was confirmed by their subsequent analysis by capillary isoelectric focusing. Their viability was confirmed by a cultivation of the conidia extracted from the collected fractions after preparative isoelectric focusing.
Collapse
Affiliation(s)
- Marie Horká
- Institute of Analytical Chemistry of the CAS, Brno, Czech Republic
| | - Jiří Šalplachta
- Institute of Analytical Chemistry of the CAS, Brno, Czech Republic
| | - Filip Růžička
- The Department of Microbiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Karel Šlais
- Institute of Analytical Chemistry of the CAS, Brno, Czech Republic
| |
Collapse
|
7
|
Paul S, Singh P, Rudramurthy SM, Chakrabarti A, Ghosh AK. Matrix-assisted laser desorption/ionization–time of flight mass spectrometry: protocol standardization and database expansion for rapid identification of clinically important molds. Future Microbiol 2017; 12:1457-1466. [DOI: 10.2217/fmb-2017-0105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: To standardize the matrix-assisted laser desorption ionization–time of flight mass spectrometry protocols and expansion of existing Bruker Biotyper database for mold identification. Materials & methods: Four different sample preparation methods (protocol A, B, C and D) were evaluated. Results: On analyzing each protein extraction method, reliable identification and best log scores were achieved through protocol D. The same protocol was used to identify 153 clinical isolates. Of these 153, 123 (80.3%) were accurately identified by using existing database and remaining 30 (19.7%) were not identified due to unavailability in database. On inclusion of missing main spectrum profile in existing database, all 153 isolates were identified. Conclusion: Matrix-assisted laser desorption ionization–time of flight mass spectrometry can be used for routine identification of clinically important molds.
Collapse
Affiliation(s)
- Saikat Paul
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh-160012, India
| | - Pankaj Singh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh-160012, India
| | - Shivaprakash M Rudramurthy
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh-160012, India
| | - Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh-160012, India
| | - Anup K Ghosh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh-160012, India
| |
Collapse
|
8
|
Kumaran S, Abdelhamid HN, Wu HF. Quantification analysis of protein and mycelium contents upon inhibition of melanin for Aspergillus niger: a study of matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS). RSC Adv 2017. [DOI: 10.1039/c7ra03741d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Mass spectrometry (MS) provides a simple discrimination method for microorganisms.
Collapse
Affiliation(s)
- Sekar Kumaran
- Department of Chemistry and Center for Nanoscience and Nanotechnology
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- School of Pharmacy
| | - Hani Nasser Abdelhamid
- Department of Chemistry and Center for Nanoscience and Nanotechnology
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- School of Pharmacy
| | - Hui-Fen Wu
- Department of Chemistry and Center for Nanoscience and Nanotechnology
- National Sun Yat-Sen University
- Kaohsiung
- Taiwan
- School of Pharmacy
| |
Collapse
|
9
|
Emerging and Future Applications of Matrix-Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF) Mass Spectrometry in the Clinical Microbiology Laboratory. J Mol Diagn 2016; 18:789-802. [DOI: 10.1016/j.jmoldx.2016.07.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 06/29/2016] [Accepted: 07/21/2016] [Indexed: 12/17/2022] Open
|
10
|
Cassagne C, Normand AC, L'Ollivier C, Ranque S, Piarroux R. Performance of MALDI-TOF MS platforms for fungal identification. Mycoses 2016; 59:678-690. [DOI: 10.1111/myc.12506] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 03/04/2016] [Accepted: 03/12/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Carole Cassagne
- Parasitology and Mycology; Assistance Publique-Hôpitaux de Marseille; CHU Timone-Adultes; Marseilles CEDEX 5 France
- Aix-Marseille University; UMR MD3 IP-TPT; Marseilles France
| | - Anne-Cécile Normand
- Parasitology and Mycology; Assistance Publique-Hôpitaux de Marseille; CHU Timone-Adultes; Marseilles CEDEX 5 France
| | - Coralie L'Ollivier
- Parasitology and Mycology; Assistance Publique-Hôpitaux de Marseille; CHU Timone-Adultes; Marseilles CEDEX 5 France
- Aix-Marseille University; UMR MD3 IP-TPT; Marseilles France
| | - Stéphane Ranque
- Parasitology and Mycology; Assistance Publique-Hôpitaux de Marseille; CHU Timone-Adultes; Marseilles CEDEX 5 France
- Aix-Marseille University; UMR MD3 IP-TPT; Marseilles France
| | - Renaud Piarroux
- Parasitology and Mycology; Assistance Publique-Hôpitaux de Marseille; CHU Timone-Adultes; Marseilles CEDEX 5 France
- Aix-Marseille University; UMR MD3 IP-TPT; Marseilles France
| |
Collapse
|
11
|
Ulrich S, Biermaier B, Bader O, Wolf G, Straubinger RK, Didier A, Sperner B, Schwaiger K, Gareis M, Gottschalk C. Identification of Stachybotrys spp. by MALDI-TOF mass spectrometry. Anal Bioanal Chem 2016; 408:7565-7581. [PMID: 27475444 DOI: 10.1007/s00216-016-9800-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/01/2016] [Accepted: 07/14/2016] [Indexed: 11/26/2022]
Abstract
Stachybotrys (S.) spp. are omnipresent cellulolytic molds. Some species are highly toxic owing to their ability to synthesize various secondary metabolites such as macrocyclic trichothecenes or hemolysins. The reliable identification of Stachybotrys at species level is currently limited to genome-based identification. This study aimed to establish a fast and reliable MALDI-TOF MS identification method by optimizing the pre-analytical steps for protein extraction for subsequent generation of high-quality fingerprint mass spectra. Eight reference strains of the American Type Culture Collection and the Technical University of Denmark were cultivated in triplicate (biological repetitions) for 2 days in malt extract broth. The mycelia (1.5 ml) were first washed with 75 % ethanol and an additional washing step with dimethyl sulfoxide (10 %) was added to remove unspecific low weight masses. Furthermore, mycelia were broken with roughened glass beads in formic acid (70 %) and acetonitrile. The method was successfully applied to a total of 45 isolates of Stachybotrys originating from three different habitats (indoor, feed, and food samples; n = 15 each): Twenty-seven isolates of S. chartarum and 18 isolates of S. chlorohalonata could be identified by MALDI-TOF MS. The data obtained exactly matched those obtained by genome-based identification. The mean score values for S. chartarum ranged from 2.509 to 2.739 and from 2.148 to 2.622 for S. chlorohalonata with a very good reproducibility: the relative standard deviations were between 0.3 % and 6.8 %. Thus, MALDI-TOF MS proved to be a fast and reliable alternative to identification of Stachybotrys spp. by nucleotide amplification and sequencing.
Collapse
Affiliation(s)
- Sebastian Ulrich
- Chair of Food Safety, Department of Veterinary Sciences, LMU Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany.
| | - Barbara Biermaier
- Chair of Food Safety, Department of Veterinary Sciences, LMU Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany
| | - Oliver Bader
- Institute for Medical Microbiology, University Medical Center Goettingen, Kreuzbergring 57, 37075, Goettingen, Germany
| | - Georg Wolf
- Chair of Microbiology and Mycology, Department of Veterinary Sciences, LMU Munich, Veterinaerstr. 13, 80539, Munich, Germany
| | - Reinhard K Straubinger
- Chair of Microbiology and Mycology, Department of Veterinary Sciences, LMU Munich, Veterinaerstr. 13, 80539, Munich, Germany
| | - Andrea Didier
- Chair for Hygiene and Technology of Milk, Department of Veterinary Sciences, LMU Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany
| | - Brigitte Sperner
- Chair of Food Safety, Department of Veterinary Sciences, LMU Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany
| | - Karin Schwaiger
- Chair of Food Safety, Department of Veterinary Sciences, LMU Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany
| | - Manfred Gareis
- Chair of Food Safety, Department of Veterinary Sciences, LMU Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany
| | - Christoph Gottschalk
- Chair of Food Safety, Department of Veterinary Sciences, LMU Munich, Schoenleutnerstr. 8, 85764, Oberschleissheim, Germany
| |
Collapse
|
12
|
Schröttner P, Gunzer F, Schüppel J, Rudolph WW. Identification of Rare Bacterial Pathogens by 16S rRNA Gene Sequencing and MALDI-TOF MS. J Vis Exp 2016:53176. [PMID: 27500532 PMCID: PMC4993432 DOI: 10.3791/53176] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
There are a number of rare and, therefore, insufficiently described bacterial pathogens which are reported to cause severe infections especially in immunocompromised patients. In most cases only few data, mostly published as case reports, are available which investigate the role of such pathogens as an infectious agent. Therefore, in order to clarify the pathogenic character of such microorganisms, it is necessary to conduct epidemiologic studies which include large numbers of these bacteria. The methods used in such a surveillance study have to meet the following criteria: the identification of the strains has to be accurate according to the valid nomenclature, they should be easy to handle (robustness), economical in routine diagnostics and they have to generate comparable results among different laboratories. Generally, there are three strategies for identifying bacterial strains in a routine setting: 1) phenotypic identification characterizing the biochemical and metabolic properties of the bacteria, 2) molecular techniques such as 16S rRNA gene sequencing and 3) mass spectrometry as a novel proteome based approach. Since mass spectrometry and molecular approaches are the most promising tools for identifying a large variety of bacterial species, these two methods are described. Advances, limitations and potential problems when using these techniques are discussed.
Collapse
Affiliation(s)
- Percy Schröttner
- Institut für Medizinische Mikrobiologie und Hygiene, Medizinische Fakultät Carl Gustav Carus, TU Dresden;
| | - Florian Gunzer
- Institut für Medizinische Mikrobiologie und Hygiene, Medizinische Fakultät Carl Gustav Carus, TU Dresden
| | - Jana Schüppel
- Institut für Virologie, Medizinische Fakultät Carl Gustav Carus, TU Dresden
| | - Wolfram W Rudolph
- Institut für Virologie, Medizinische Fakultät Carl Gustav Carus, TU Dresden
| |
Collapse
|
13
|
Nano-Biofungicides: Emerging Trend in Insect Pest Control. ADVANCES AND APPLICATIONS THROUGH FUNGAL NANOBIOTECHNOLOGY 2016. [DOI: 10.1007/978-3-319-42990-8_15] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
14
|
|
15
|
Gruenwald M, Rabenstein A, Remesch M, Kuever J. MALDI-TOF mass spectrometry fingerprinting: A diagnostic tool to differentiate dematiaceous fungi Stachybotrys chartarum and Stachybotrys chlorohalonata. J Microbiol Methods 2015; 115:83-8. [PMID: 26036596 DOI: 10.1016/j.mimet.2015.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/27/2015] [Accepted: 05/29/2015] [Indexed: 11/17/2022]
Abstract
Stachybotrys chartarum and Stachybotrys chlorohalonata are two closely related species. Unambiguous identification of these two species is a challenging task if relying solely on morphological criteria and therefore smarter and less labor-intensive approaches are needed. Here we show that even such closely related species of fungi as S. chartarum and S. chlorohalonata are unequivocally discriminated by their highly reproducible MALDI-TOF-MS fingerprints (matrix assisted laser desorption/ionization time-of-flight mass spectrometry fingerprints). We examined 19 Stachybotrys and one Aspergillus isolate by MALDI-TOF-MS. All but one isolate produced melanin containing conidia on malt extract agar. Mass spectra were obtained in good quality from the analysis of hyaline and darkly pigmented conidia by circumventing the property of melanin which causes signal suppression. MALDI-TOF fingerprint analysis clearly discriminated not only the two morphologically similar species S. chartarum and S. chlorohalonata from each other but separated them precisely from Stachybotrys bisbyi and Aspergillus versicolor isolates. Furthermore, even S. chartarum chemotypes A and S could be differentiated into two distinct groups by their MALDI-TOF fingerprints. The chemotypes of S. chartarum isolates were identified by trichodiene synthase 5 (tri5) sequences prior to mass spectra analysis. Additionally, species identities of all isolates were verified by their 18S rRNA and tri5 gene sequences.
Collapse
Affiliation(s)
- Maike Gruenwald
- Bremen Institute for Materials Testing, Microbiology Department, Paul-Feller-Straße 1, 28199 Bremen, Germany.
| | - Andreas Rabenstein
- Bremen Institute for Materials Testing, Microbiology Department, Paul-Feller-Straße 1, 28199 Bremen, Germany.
| | - Markko Remesch
- Bremen Institute for Materials Testing, Microbiology Department, Paul-Feller-Straße 1, 28199 Bremen, Germany.
| | - Jan Kuever
- Bremen Institute for Materials Testing, Microbiology Department, Paul-Feller-Straße 1, 28199 Bremen, Germany.
| |
Collapse
|
16
|
Bourassa L, Butler-Wu SM. MALDI-TOF Mass Spectrometry for Microorganism Identification. METHODS IN MICROBIOLOGY 2015. [DOI: 10.1016/bs.mim.2015.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Gopal J, Manikandan M, Wu HF. Low cost aluminium foil platforms for rapid mass spectrometric differentiation of the fungal pathogen Aspergillus niger mycelium and spores by in situ gold nanosphere accelerated microwave digestion. RSC Adv 2014. [DOI: 10.1039/c3ra46788k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
18
|
Chalupová J, Raus M, Sedlářová M, Sebela M. Identification of fungal microorganisms by MALDI-TOF mass spectrometry. Biotechnol Adv 2013; 32:230-41. [PMID: 24211254 DOI: 10.1016/j.biotechadv.2013.11.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/24/2013] [Accepted: 11/03/2013] [Indexed: 12/26/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has emerged as a reliable tool for fast identification and classification of microorganisms. In this regard, it represents a strong challenge to microscopic and molecular biology methods. Nowadays, commercial MALDI systems are accessible for biological research work as well as for diagnostic applications in clinical medicine, biotechnology and industry. They are employed namely in bacterial biotyping but numerous experimental strategies have also been developed for the analysis of fungi, which is the topic of the present review. Members of many fungal genera such as Aspergillus, Fusarium, Penicillium or Trichoderma and also various yeasts from clinical samples (e.g. Candida albicans) have been successfully identified by MALDI-TOF MS. However, there is no versatile method for fungi currently available even though the use of only a limited number of matrix compounds has been reported. Either intact cell/spore MALDI-TOF MS is chosen or an extraction of surface proteins is performed and then the resulting extract is measured. Biotrophic fungal phytopathogens can be identified via a direct acquisition of MALDI-TOF mass spectra e.g. from infected plant organs contaminated by fungal spores. Mass spectrometric peptide/protein profiles of fungi display peaks in the m/z region of 1000-20000, where a unique set of biomarker ions may appear facilitating a differentiation of samples at the level of genus, species or strain. This is done with the help of a processing software and spectral database of reference strains, which should preferably be constructed under the same standardized experimental conditions.
Collapse
Affiliation(s)
- Jana Chalupová
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Martin Raus
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Michaela Sedlářová
- Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic
| | - Marek Sebela
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 11, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
19
|
Chan PH, Wong SY, Lin SH, Chen YC. Lysozyme-encapsulated gold nanocluster-based affinity mass spectrometry for pathogenic bacteria. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:2143-2148. [PMID: 23996387 DOI: 10.1002/rcm.6674] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/24/2013] [Accepted: 07/02/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE Bacterial infections can be difficult to treat and can lead to irreversible damage to patients if proper treatment is not provided in time. Additionally, the emerging threat from antibiotic-resistant bacterial strains makes medical treatment even more difficult. Thus, rapid identification of infected bacterial strains is essential to assist diagnostics and medical treatment. METHODS Lysozymes are glycoside hydrolases that can bind with peptidoglycans on bacterial cell walls. In this work, we demonstrated that lysozyme-encapsulated gold nanoclusters (lysozyme-AuNCs) with red photoluminescence can be used as affinity probes to concentrate pathogenic bacteria. After bacteria had been probed by the lysozyme-AuNCs in a sample solution, the lysozyme-AuNC-bacteria conjugates were readily spun down at a low centrifugation speed. The red emission from the AuNCs on the conjugates could be visualized with the naked eye under illumination of ultraviolet light. The bacteria in the conjugates can be identified by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) combined with principal component analysis (PCA). RESULTS We demonstrated that pathogenic bacteria including Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, pandrug-resistant Acinetobacter baumannii, Staphylococcus aureus, Enterococcus faecalis, and vancomycin-resistant Enterococcus faecalis (VRE) can be readily concentrated by the lysozyme-AuNCs and distinguished by the results combining MALDI-MS and PCA. Additionally, the possibility of using the current approach to differentiate E. faecalis from VRE was also demonstrated. The lowest detection concentration for E. coli using the current approach is ~10(6) cells/mL. CONCLUSIONS The results indicated that the lysozyme-AuNCs are effective affinity probes for Gram-positive and Gram-negative bacteria. By combining the results from MALDI-MS and PCA, different bacteria can be easily distinguished. The current approach can be potentially used to assist the identification of bacteria from biological fluids.
Collapse
Affiliation(s)
- Po-Han Chan
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan
| | | | | | | |
Collapse
|
20
|
Posteraro B, De Carolis E, Vella A, Sanguinetti M. MALDI-TOF mass spectrometry in the clinical mycology laboratory: identification of fungi and beyond. Expert Rev Proteomics 2013; 10:151-64. [PMID: 23573782 DOI: 10.1586/epr.13.8] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
MALDI-TOF mass spectrometry (MS) is becoming essential in most clinical microbiology laboratories throughout the world. Its successful use is mainly attributable to the low operational costs, the universality and flexibility of detection, as well as the specificity and speed of analysis. Based on characteristic protein spectra obtained from intact cells - by means of simple, rapid and reproducible preanalytical and analytical protocols - MALDI-TOF MS allows a highly discriminatory identification of yeasts and filamentous fungi starting from colonies. Whenever used early, direct identification of yeasts from positive blood cultures has the potential to greatly shorten turnaround times and to improve laboratory diagnosis of fungemia. More recently, but still at an infancy stage, MALDI-TOF MS is used to perform strain typing and to determine antifungal drug susceptibility. In this article, the authors discuss how the MALDI-TOF MS technology is destined to become a powerful tool for routine mycological diagnostics.
Collapse
|
21
|
Sandrin TR, Goldstein JE, Schumaker S. MALDI TOF MS profiling of bacteria at the strain level: a review. MASS SPECTROMETRY REVIEWS 2013; 32:188-217. [PMID: 22996584 DOI: 10.1002/mas.21359] [Citation(s) in RCA: 209] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 06/18/2012] [Accepted: 06/18/2012] [Indexed: 05/16/2023]
Abstract
Since the advent of the use of matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF MS) as a tool for microbial characterization, efforts to increase the taxonomic resolution of the approach have been made. The rapidity and efficacy of the approach have suggested applications in counter-bioterrorism, prevention of food contamination, and monitoring the spread of antibiotic-resistant bacteria. Strain-level resolution has been reported with diverse bacteria, using library-based and bioinformatics-enabled approaches. Three types of characterization at the strain level have been reported: strain categorization, strain differentiation, and strain identification. Efforts to enhance the library-based approach have involved sample pre-treatment and data reduction strategies. Bioinformatics approaches have leveraged the ever-increasing amount of publicly available genomic and proteomic data to attain strain-level characterization. Bioinformatics-enabled strategies have facilitated strain characterization via intact biomarker identification, bottom-up, and top-down approaches. Rigorous quantitative and advanced statistical analyses have fostered success at the strain level with both approaches. Library-based approaches can be limited by effects of sample preparation and culture conditions on reproducibility, whereas bioinformatics-enabled approaches are typically limited to bacteria, for which genetic and/or proteomic data are available. Biological molecules other than proteins produced in strain-specific manners, including lipids and lipopeptides, might represent other avenues by which strain-level resolution might be attained. Immunological and lectin-based chemistries have shown promise to enhance sensitivity and specificity. Whereas the limits of the taxonomic resolution of MALDI TOF MS profiling of bacteria appears bacterium-specific, recent data suggest that these limits might not yet have been reached.
Collapse
Affiliation(s)
- Todd R Sandrin
- School of Mathematical and Natural Sciences, Arizona State University, Phoenix, Arizona 85069, USA.
| | | | | |
Collapse
|
22
|
Toh-Boyo GM, Wulff SS, Basile F. Comparison of Sample Preparation Methods and Evaluation of Intra- and Intersample Reproducibility in Bacteria MALDI-MS Profiling. Anal Chem 2012; 84:9971-80. [DOI: 10.1021/ac302375e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gwendoline M. Toh-Boyo
- Department
of Chemistry and ‡Department of Statistics, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming 82072,
United States
| | - Shaun S. Wulff
- Department
of Chemistry and ‡Department of Statistics, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming 82072,
United States
| | - Franco Basile
- Department
of Chemistry and ‡Department of Statistics, University of Wyoming, 1000 E. University Ave., Laramie, Wyoming 82072,
United States
| |
Collapse
|
23
|
Vermeulen E, Verhaegen J, Indevuyst C, Lagrou K. Update on the Evolving Role of MALDI-TOF MS for Laboratory Diagnosis of Fungal Infections. CURRENT FUNGAL INFECTION REPORTS 2012. [DOI: 10.1007/s12281-012-0093-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
De Carolis E, Posteraro B, Lass-Flörl C, Vella A, Florio A, Torelli R, Girmenia C, Colozza C, Tortorano A, Sanguinetti M, Fadda G. Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect 2012; 18:475-84. [DOI: 10.1111/j.1469-0691.2011.03599.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Croxatto A, Prod'hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev 2012; 36:380-407. [DOI: 10.1111/j.1574-6976.2011.00298.x] [Citation(s) in RCA: 581] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/06/2011] [Accepted: 07/07/2011] [Indexed: 11/30/2022] Open
|
26
|
Schumaker S, Borror CM, Sandrin TR. Automating data acquisition affects mass spectrum quality and reproducibility during bacterial profiling using an intact cell sample preparation method with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:243-253. [PMID: 22223309 DOI: 10.1002/rcm.5309] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF MS) has emerged as a promising tool to rapidly profile bacteria at the genus and species level and, more recently, at the sub-species (strain) level. Recently, it has been proposed that the approach can be enhanced with regard to reproducibility and throughput by automating spectrum acquisition; however, effects of automating spectrum acquisition on spectrum quality and reproducibility have not been investigated. Using an intact cell-based sample preparation method, we directly compared the quality and reproducibility of spectra acquired in a fully automated fashion to those acquired manually by two operators with different levels of experience. While automation tended to increase base peak resolution, other measures of spectrum quality, including signal-to-noise (S:N) ratio, data richness, and reproducibility were reduced. Negative effects of automation on the performance of this approach to bacterial profiling may be particularly important during profiling of closely related strains of bacteria that yield very similar spectra.
Collapse
Affiliation(s)
- Stephanie Schumaker
- Division of Mathematical and Natural Sciences, Arizona State University, MC 2352, P.O. Box 37100, Phoenix, AZ 85069, USA
| | | | | |
Collapse
|
27
|
Horká M, Kubesová A, Šalplachta J, Zapletalová E, Horký J, Šlais K. Capillary and gel electromigration techniques and MALDI-TOF MS – Suitable tools for identification of filamentous fungi. Anal Chim Acta 2012; 716:155-62. [DOI: 10.1016/j.aca.2011.12.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 10/14/2022]
|
28
|
Lee CH, Gopal J, Wu HF. Ionic solution and nanoparticle assisted MALDI-MS as bacterial biosensors for rapid analysis of yogurt. Biosens Bioelectron 2012; 31:77-83. [DOI: 10.1016/j.bios.2011.09.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 09/23/2011] [Accepted: 09/29/2011] [Indexed: 11/24/2022]
|
29
|
Cassagne C, Ranque S, Normand AC, Fourquet P, Thiebault S, Planard C, Hendrickx M, Piarroux R. Mould routine identification in the clinical laboratory by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLoS One 2011; 6:e28425. [PMID: 22194834 PMCID: PMC3237453 DOI: 10.1371/journal.pone.0028425] [Citation(s) in RCA: 191] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 11/08/2011] [Indexed: 11/29/2022] Open
Abstract
Background MALDI-TOF MS recently emerged as a valuable identification tool for bacteria and yeasts and revolutionized the daily clinical laboratory routine. But it has not been established for routine mould identification. This study aimed to validate a standardized procedure for MALDI-TOF MS-based mould identification in clinical laboratory. Materials and Methods First, pre-extraction and extraction procedures were optimized. With this standardized procedure, a 143 mould strains reference spectra library was built. Then, the mould isolates cultured from sequential clinical samples were prospectively subjected to this MALDI-TOF MS based-identification assay. MALDI-TOF MS-based identification was considered correct if it was concordant with the phenotypic identification; otherwise, the gold standard was DNA sequence comparison-based identification. Results The optimized procedure comprised a culture on sabouraud-gentamicin-chloramphenicol agar followed by a chemical extraction of the fungal colonies with formic acid and acetonitril. The identification was done using a reference database built with references from at least four culture replicates. For five months, 197 clinical isolates were analyzed; 20 were excluded because they were not identified at the species level. MALDI-TOF MS-based approach correctly identified 87% (154/177) of the isolates analyzed in a routine clinical laboratory activity. It failed in 12% (21/177), whose species were not represented in the reference library. MALDI-TOF MS-based identification was correct in 154 out of the remaining 156 isolates. One Beauveria bassiana was not identified and one Rhizopus oryzae was misidentified as Mucor circinelloides. Conclusions This work's seminal finding is that a standardized procedure can also be used for MALDI-TOF MS-based identification of a wide array of clinically relevant mould species. It thus makes it possible to identify moulds in the routine clinical laboratory setting and opens new avenues for the development of an integrated MALDI-TOF MS-based solution for the identification of any clinically relevant microorganism.
Collapse
Affiliation(s)
- Carole Cassagne
- Laboratoire de Parasitologie-Mycologie, CHU Timone, Université de la Méditerranée, Marseille, France.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ho YP, Reddy PM. Advances in mass spectrometry for the identification of pathogens. MASS SPECTROMETRY REVIEWS 2011; 30:1203-24. [PMID: 21557290 PMCID: PMC7168406 DOI: 10.1002/mas.20320] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 08/06/2010] [Accepted: 08/06/2010] [Indexed: 05/25/2023]
Abstract
Mass spectrometry (MS) has become an important technique to identify microbial biomarkers. The rapid and accurate MS identification of microorganisms without any extensive pretreatment of samples is now possible. This review summarizes MS methods that are currently utilized in microbial analyses. Affinity methods are effective to clean, enrich, and investigate microorganisms from complex matrices. Functionalized magnetic nanoparticles might concentrate traces of target microorganisms from sample solutions. Therefore, nanoparticle-based techniques have a favorable detection limit. MS coupled with various chromatographic techniques, such as liquid chromatography and capillary electrophoresis, reduces the complexity of microbial biomarkers and yields reliable results. The direct analysis of whole pathogenic microbial cells with matrix-assisted laser desorption/ionization MS without sample separation reveals specific biomarkers for taxonomy, and has the advantages of simplicity, rapidity, and high-throughput measurements. The MS detection of polymerase chain reaction (PCR)-amplified microbial nucleic acids provides an alternative to biomarker analysis. This review will conclude with some current applications of MS in the identification of pathogens.
Collapse
Affiliation(s)
- Yen-Peng Ho
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan.
| | | |
Collapse
|
31
|
|
32
|
Urban PL, Amantonico A, Zenobi R. Lab-on-a-plate: extending the functionality of MALDI-MS and LDI-MS targets. MASS SPECTROMETRY REVIEWS 2011; 30:435-478. [PMID: 21254192 DOI: 10.1002/mas.20288] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We review the literature that describes how (matrix-assisted) laser desorption/ionization (MA)LDI target plates can be used not only as sample supports, but beyond that: as functional parts of analytical protocols that incorporate detection by MALDI-MS or matrix-free LDI-MS. Numerous steps of analytical procedures can be performed directly on the (MA)LDI target plates prior to the ionization of analytes in the ion source of a mass spectrometer. These include homogenization, preconcentration, amplification, purification, extraction, digestion, derivatization, synthesis, separation, detection with complementary techniques, data storage, or other steps. Therefore, we consider it helpful to define the "lab-on-a-plate" as a format for carrying out extensive sample treatment as well as bioassays directly on (MA)LDI target plates. This review introduces the lab-on-plate approach and illustrates it with the aid of relevant examples from the scientific and patent literature.
Collapse
Affiliation(s)
- Pawel L Urban
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
33
|
Buskirk AD, Hettick JM, Chipinda I, Law BF, Siegel PD, Slaven JE, Green BJ, Beezhold DH. Fungal pigments inhibit the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of darkly pigmented fungi. Anal Biochem 2011; 411:122-8. [DOI: 10.1016/j.ab.2010.11.025] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 11/10/2010] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
|
34
|
Coulibaly O, Marinach-Patrice C, Cassagne C, Piarroux R, Mazier D, Ranque S. Pseudallescheria/Scedosporium complex species identification by Matrix-Assisted Laser Desorption Ionization Time-Of-Flight Mass Spectrometry. Med Mycol 2011; 49:621-6. [PMID: 21281060 DOI: 10.3109/13693786.2011.555424] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Because timely and accurate identification of members of the Pseudallescheria/ Scedosporium species complex (PSC) is clinically relevant, the objective of this investigation was to study the stability and influence of the main variable factors in the routine clinical laboratory to the potential use the Matrix-Assisted Laser Desorption Ionization-Time-Of-Flight (MALDI-TOF MS) in the identification of these fungi. Twenty-two PSC reference strains, three clinical isolates, an αHCCA matrix, and an Autoflex I spectrometer with BioTyper software (Bruker) were employed in this study. Intra-and inter-specimen composite correlation indices for each MS spectrum as compared to a reference spectrum were computed. MS identification was stable after the fungi were subcultured over a 1-month period. While neither culture medium (Sabouraud vs. Malt extract) nor protein extraction methods (formic acid vs. trifluoroacetic acid) significantly influenced the quality of the MS identifications, they were considerably increased from day 3 to day 6 of incubation. MALDI-TOF MS can be used in the routine clinical laboratory in the identification of members of the complex provided that valid spectra libraries are developed. Although preliminary results are encouraging, further studies are warranted to demonstrate whether MS can distinguish the species that have recently been described using multilocus sequence analysis within P. boydii sl. and to validate its use in the routine clinical laboratory for identifying clinically relevant moulds.
Collapse
Affiliation(s)
- Oumar Coulibaly
- Laboratoire de Parasitologie-Mycologie, CHU Timone, Université de la Méditerranée, Marseille, France
| | | | | | | | | | | |
Collapse
|
35
|
Dong H, Shen W, Cheung MTW, Liang Y, Cheung HY, Allmaier G, Kin-Chung Au O, Lam YW. Rapid detection of apoptosis in mammalian cells by using intact cell MALDI mass spectrometry. Analyst 2011; 136:5181-9. [DOI: 10.1039/c1an15750g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Carneiro HA, Coleman JJ, Restrepo A, Mylonakis E. Fusarium infection in lung transplant patients: report of 6 cases and review of the literature. Medicine (Baltimore) 2011; 90:69-80. [PMID: 21200188 PMCID: PMC3750960 DOI: 10.1097/md.0b013e318207612d] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Fusarium is a fungal pathogen of immunosuppressed lung transplant patients associated with a high mortality in those with severe and persistent neutropenia. The principle portal of entry for Fusarium species is the airways, and lung involvement almost always occurs among lung transplant patients with disseminated infection. In these patients, the immunoprotective mechanisms of the transplanted lungs are impaired, and they are, therefore, more vulnerable to Fusarium infection. As a result, fusariosis occurs in up to 32% of lung transplant patients. We studied fusariosis in 6 patients following lung transplantation who were treated at Massachusetts General Hospital during an 8-year period and reviewed 3 published cases in the literature. Cases were identified by the microbiology laboratory and through discharge summaries. Patients presented with dyspnea, fever, nonproductive cough, hemoptysis, and headache. Blood tests showed elevated white blood cell counts with granulocytosis and elevated inflammatory markers. Cultures of Fusarium were isolated from bronchoalveolar lavage, blood, and sputum specimens.Treatments included amphotericin B, liposomal amphotericin B, caspofungin, voriconazole, and posaconazole, either alone or in combination. Lung involvement occurred in all patients with disseminated disease and it was associated with a poor outcome. The mortality rate in this group of patients was high (67%), and of those who survived, 1 patient was treated with a combination of amphotericin B and voriconazole, 1 patient with amphotericin B, and 1 patient with posaconazole. Recommended empirical treatment includes voriconazole, amphotericin B or liposomal amphotericin B first-line, and posaconazole for refractory disease. High-dose amphotericin B is recommended for treatment of most cases of fusariosis. The echinocandins (for example, caspofungin, micafungin, anidulafungin) are generally avoided because Fusarium species have intrinsic resistance to them. Treatment should ideally be based on the Fusarium isolate, susceptibility testing, and host-specific factors. Prognosis of fusariosis in the immunocompromised is directly related to a patient's immune status. Prevention of Fusarium infection is recommended with aerosolized amphotericin B deoxycholate, which also has activity against other important fungi.
Collapse
Affiliation(s)
- Herman A Carneiro
- From Division of Infectious Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | | | | |
Collapse
|
37
|
Hotta Y, Teramoto K, Sato H, Yoshikawa H, Hosoda A, Tamura H. Classification of Genus Pseudomonas by MALDI-TOF MS Based on Ribosomal Protein Coding in S10−spc−alpha Operon at Strain Level. J Proteome Res 2010; 9:6722-8. [DOI: 10.1021/pr100868d] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yudai Hotta
- School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Advanced Technology Division, JEOL Ltd., Tokyo 196-8558, Japan, and Department of Life, Environmental and Material Science, FIT, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Kanae Teramoto
- School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Advanced Technology Division, JEOL Ltd., Tokyo 196-8558, Japan, and Department of Life, Environmental and Material Science, FIT, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Hiroaki Sato
- School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Advanced Technology Division, JEOL Ltd., Tokyo 196-8558, Japan, and Department of Life, Environmental and Material Science, FIT, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Hiromichi Yoshikawa
- School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Advanced Technology Division, JEOL Ltd., Tokyo 196-8558, Japan, and Department of Life, Environmental and Material Science, FIT, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Akifumi Hosoda
- School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Advanced Technology Division, JEOL Ltd., Tokyo 196-8558, Japan, and Department of Life, Environmental and Material Science, FIT, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Hiroto Tamura
- School of Agriculture, Meijo University, 1-501 Shiogamaguchi, Tenpaku-ku, Nagoya, Aichi 468-8502, Japan, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan, Advanced Technology Division, JEOL Ltd., Tokyo 196-8558, Japan, and Department of Life, Environmental and Material Science, FIT, 3-30-1 Wajirohigashi, Higashi-ku, Fukuoka 811-0295, Japan
| |
Collapse
|
38
|
Seng P, Rolain JM, Fournier PE, La Scola B, Drancourt M, Raoult D. MALDI-TOF-mass spectrometry applications in clinical microbiology. Future Microbiol 2010; 5:1733-54. [DOI: 10.2217/fmb.10.127] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
MALDI-TOF-mass spectrometry (MS) has been successfully adapted for the routine identification of microorganisms in clinical microbiology laboratories in the past 10 years. This revolutionary technique allows for easier and faster diagnosis of human pathogens than conventional phenotypic and molecular identification methods, with unquestionable reliability and cost–effectiveness. This article will review the application of MALDI-TOF-MS tools in routine clinical diagnosis, including the identification of bacteria at the species, subspecies, strain and lineage levels, and the identification of bacterial toxins and antibiotic-resistance type. We will also discuss the application of MALDI-TOF-MS tools in the identification of Archaea, eukaryotes and viruses. Pathogenic identification from colony-cultured, blood-cultured, urine and environmental samples is also reviewed.
Collapse
Affiliation(s)
- Piseth Seng
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Jean-Marc Rolain
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Pierre Edouard Fournier
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Bernard La Scola
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | - Michel Drancourt
- Pôle des Maladies Infectieuses, Assistance Publique-Hôpitaux de Marseille et URMITE UMR CNRS-IRD 6236, IFR48, Faculté de Médecine, Université de la Méditerranée, Marseille, France: URMITE, Faculté de Médecine, 27 Boulevard Jean Moulin, 13385 Marseille cedex 5, France
| | | |
Collapse
|
39
|
Microbial fingerprinting using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) applications and challenges. ADVANCES IN APPLIED MICROBIOLOGY 2010; 71:149-84. [PMID: 20378054 DOI: 10.1016/s0065-2164(10)71006-6] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recent threats posed by pathogenic microorganisms in food, recreational waters, and as agents of bioterror have underscored the need for the development of more rapid, accurate, and cost-effective methods of microbial characterization and identification. This chapter focuses on the use of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to rapidly characterize and identify microorganisms through generation of characteristic fingerprints of intact cells. While most efforts have focused on bacteria, this technology has also been applied to fungi and viruses. Results of most studies suggest that MALDI-TOF MS can be used to rapidly and accurately characterize microorganisms. A variety of quantitative approaches have been employed in the analysis of MALDI-TOF MS fingerprints of microorganisms. The reproducibility of fingerprints of intact cells remains a primary concern and limitation associated with this approach. Protocols and instrumentation used have varied considerably and likely account for much of the variability in reproducibility reported. Key first steps to overcoming this limitation will be the development of standard approaches to quantifying reproducibility and the development of standard protocols for sample preparation and analysis.
Collapse
|
40
|
Santos C, Paterson R, Venâncio A, Lima N. Filamentous fungal characterizations by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Appl Microbiol 2010; 108:375-85. [DOI: 10.1111/j.1365-2672.2009.04448.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Tao J, Zhang G, Jiang Z, Cheng Y, Feng J, Chen Z. Detection of pathogenic Verticillium spp. using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:3647-3654. [PMID: 19902550 DOI: 10.1002/rcm.4296] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Verticillium spp. have been listed by the European and Mediterranean Plant Protection Organization (EPPO) and China as plant quarantine pests. Although attempts have been made to develop a simple routine laboratory assay to detect these organisms, none are routinely used. We describe for the first time a robust assay for reliable identification of Verticillium spp. using protein fingerprinting data obtained by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry(MALDI-TOF-MS). Several sample preparation methods and matrices were investigated to improve mass spectra for the routine identification of six species of Verticillium spp.(Verticillium dahiliae, V. alboatrum, V. fungicola, V. nigrescens, and V. lecanii) by MALDI-TOF-MS. Using the optimized experimental method, we constructed a protein fingerprint database for six species of Verticillium and established a analysis criteria of log(Score). This MALDI-TOF-MS protocol should prove useful as a rapid and reliable assay for distinguishing different Verticillium spp.
Collapse
Affiliation(s)
- Jie Tao
- Technical Centre of APIQ, Shenzhen Entry-Exit Inspection & Quarantine Bureau, Shenzhen 518010, P.R. China
| | | | | | | | | | | |
Collapse
|
42
|
Kemptner J, Marchetti-Deschmann M, Kubicek CP, Allmaier G. Mixed volume sample preparation method for intact cell mass spectrometry of Fusarium spores. JOURNAL OF MASS SPECTROMETRY : JMS 2009; 44:1622-1624. [PMID: 19780046 DOI: 10.1002/jms.1669] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|
43
|
Dong H, Kemptner J, Marchetti-Deschmann M, Kubicek CP, Allmaier G. Development of a MALDI two-layer volume sample preparation technique for analysis of colored conidia spores of Fusarium by MALDI linear TOF mass spectrometry. Anal Bioanal Chem 2009; 395:1373-83. [DOI: 10.1007/s00216-009-3067-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 08/10/2009] [Accepted: 08/11/2009] [Indexed: 11/30/2022]
|
44
|
Marinach-Patrice C, Lethuillier A, Marly A, Brossas JY, Gené J, Symoens F, Datry A, Guarro J, Mazier D, Hennequin C. Use of mass spectrometry to identify clinical Fusarium isolates. Clin Microbiol Infect 2009; 15:634-42. [PMID: 19456834 DOI: 10.1111/j.1469-0691.2009.02758.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fusarium spp. have recently emerged as significant human pathogens. Identification of these species is important, both for epidemiological purposes and for patient management, but conventional identification based on morphological traits is hindered by major phenotypic polymorphism. In this study, 62 strains, or isolates, belonging to nine Fusarium species were subjected to both molecular identification TEF1 gene sequencing and matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) analysis. Following stringent standardization, the proteomic-based method appeared to be both reproducible and robust. Mass spectral analysis by comparison with a database, built in this study, of the most frequently isolated species, including Fusarium solani, Fusarium oxysporum, Fusarium verticilloides, Fusarium proliferatum and Fusarium dimerum, correctly identified 57 strains. As expected, the four species (i.e. Fusarium chlamydosporum, Fusarium equiseti, Fusarium polyphialidicum, Fusarium sacchari) not represented in the database were not identified. Results from mass spectrometry and molecular identification agreed in five of the six cases in which results from morphological and molecular identification were not in agreement. MALDI-TOF yielded results within 1 h, making it a valuable tool for identifying clinical Fusarium isolates at the species level. Uncommon species must now be added to the database. MALDI-TOF may also prove useful for identifying other clinically important moulds.
Collapse
Affiliation(s)
- C Marinach-Patrice
- Université Pierre et Marie Curie, INSERM, UMR S 945, APHP, Hôpital St Antoine, Service Parasitologie-Mycologie, Centre d'Investigations Biomedicales, Groupe hospitalier Pitié-Salpétrière, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) for characterization and analysis of microorganisms, specifically bacteria, is described here as a rapid screening tool. The objective of this technique is not comprehensive protein analysis of a microorganism but rather a rapid screening of the organism and the accessible protein pattern for characterization and distinction. This method is based on the ionization of the readily accessible and easily ionizable portion of the protein profile of an organism that is often characteristic of different bacterial species. The utility of this screening approach is yet to reach its full potential but could be applied to food safety, disease outbreak monitoring in hospitals, culture stock integrity and verification, microbial forensics, or homeland security applications.
Collapse
|
46
|
Kemptner J, Marchetti-Deschmann M, Mach R, Druzhinina IS, Kubicek CP, Allmaier G. Evaluation of matrix-assisted laser desorption/ionization (MALDI) preparation techniques for surface characterization of intact Fusarium spores by MALDI linear time-of-flight mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2009; 23:877-884. [PMID: 19224532 DOI: 10.1002/rcm.3949] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Unambiguous identification of mycotoxin-producing fungal species as Fusarium is of great relevance to agriculture and the food-producing industry as well as in medicine. Protein profiles of intact fungal spores, such as Penicillium, Aspergillus and Trichoderma, derived from matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) were shown to provide a rapid and straightforward method for species identification and characterization. In this study, we applied this approach to five different Fusarium spp. strains which are known to affect the growth of different grain plants. To obtain a suitable MALDI matrix system and sample preparation method, thin-layer, dried-droplet and sandwich methods and several MALDI matrices, namely CHCA, DHB, FA, SA and THAP dissolved in various solvent mixtures (organic solvents such as ACN, MeOH, EtOH and iPrOH and for the aqueous phase water and 0.1% TFA), were evaluated in terms of mass spectrometric pattern and signal intensities. The most significant peptide/protein profiles were obtained with 10 mg ferulic acid (FA) in 1 mL ACN/0.1% TFA (7:3, v/v) used as matrix system. Mixing the spores with the matrix solution directly on the MALDI target (dried-droplet technique) resulted in an evenly distributed spores/matrix crystal layer, yielding highly reproducible peptide/protein profiles from the spore surfaces. Numerous abundant ions throughout the investigated m/z range (m/z 1500-15 000) could be detected. Differences in the obtained mass spectral patterns allowed the differentiation of spores of various Fusarium species.
Collapse
Affiliation(s)
- Jasmin Kemptner
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
47
|
Discrimination of Aspergillus isolates at the species and strain level by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprinting. Anal Biochem 2008; 380:276-81. [DOI: 10.1016/j.ab.2008.05.051] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 05/29/2008] [Accepted: 05/30/2008] [Indexed: 11/23/2022]
|
48
|
Qian J, Cutler JE, Cole RB, Cai Y. MALDI-TOF mass signatures for differentiation of yeast species, strain grouping and monitoring of morphogenesis markers. Anal Bioanal Chem 2008; 392:439-49. [PMID: 18690424 DOI: 10.1007/s00216-008-2288-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Revised: 07/01/2008] [Accepted: 07/07/2008] [Indexed: 11/29/2022]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) is demonstrated to be a potentially useful tool for the rapid identification of yeasts, the grouping of Candida albicans strains, and the monitoring of germ tube-specific markers. Co-crystallized with sinapinic acid as the MALDI matrix, intact yeast cells yielded a sufficient number of medium-sized ions (4-15 kDa) in MALDI mass spectra to provide "mass signatures" that were diagnostic of strain type. For most isolates, the mass signatures were affected by the growth medium, length of incubation and the cell preparation method. While the overall past success of this methodology for fungal cells has been relatively low compared to its application to bacteria, fixing the yeast cells in 50% methanol inactivated the cells, reduced cell aggregation in aqueous suspension solution, and more importantly, it significantly improved the mass signature quality. This simple but critical advance in sample treatment improved mass spectrometric signal-to-noise ratios and allowed the identification of yeasts by a mass signature approach. Under optimized conditions, Candida species (C. albicans, C. glabrata, C. krusei, C. kefyr), Aspergillus species (A. terreus, A. fumigatus, A. syndowii) and other yeast genera (Cryptococcus neoformans, Saccharomyces cerevisiae and a Rhodotorula sp.) could be distinguished. Within the C. albicans species, several common ions in the m/z 5,000-10,000 range were apparent in the mass spectra of all tested strains. In addition to shared ions, the mass spectra of individual C. albicans strains permitted grouping of the strains. Principal component analysis (PCA) was employed to confirm spectral reproducibility and C. albicans strain grouping by mass signatures. Finally, C. albicans germ tubes produced MALDI-TOF mass signatures that differed from yeast forms of this species. This is a rapid, sensitive and simple method for identifying yeasts, grouping strains and following the morphogenesis of C. albicans.
Collapse
Affiliation(s)
- Jiang Qian
- Children's Hospital, New Orleans--The Research Institute for Children, 200 Henry Clay Ave., New Orleans, LA 70118, USA
| | | | | | | |
Collapse
|
49
|
Hettick JM, Green BJ, Buskirk AD, Kashon ML, Slaven JE, Janotka E, Blachere FM, Schmechel D, Beezhold DH. Discrimination of Penicillium isolates by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprinting. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:2555-2560. [PMID: 18646251 DOI: 10.1002/rcm.3649] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to generate highly reproducible mass spectral 'fingerprints' for twelve Penicillium species. Prior to MALDI-TOF MS analysis, eight replicate cultures of each Penicillium species were subjected to three one-minute bead-beating cycles in an acetonitrile/trifluoroacetic acid solvent. The mass spectra contained abundant peaks in the range of m/z 5000-20 000, and allowed unambiguous discrimination between species. In addition, a biomarker common to all Penicillium mass spectra was observed at m/z 13 900. Discriminant analysis using the MALDI-TOF MS data yielded classification error rates of 0% (i.e. 100% correct identification), indicating that MALDI-TOF MS data may be a useful diagnostic tool for the objective identification of Penicillium species of environmental and clinical importance.
Collapse
Affiliation(s)
- Justin M Hettick
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, 1095 Willowdale Road, Morgantown, WV 26505, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Neuhof T, Berg A, Besl H, Schwecke T, Dieckmann R, von Döhren H. Peptaibol production by sepedonium strains parasitizing boletales. Chem Biodivers 2007; 4:1103-15. [PMID: 17589879 DOI: 10.1002/cbdv.200790099] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fungi of the genus Sepedonium (anamorphic ascomycetes) are known to infect fruiting bodies of Basidiomycetes of the order Boletales. We have characterized twelve Sepedonium isolates by intact-cell mass spectrometry (IC-MS) with the help of respective biomarkers and their metabolite spectra focusing on peptaibol production. A strain of mycoparasitic S. chalcipori was grown in solid-state fermentation, and tylopeptin production was found, suggesting an ascomycete origin of these peptaibols, which were first described in the basidiomycete Tylopilus neofelleus. In addition, the structures of two new peptaibols, chalciporin A (=Ac-Trp-Val-Aib-Val-Ala-Gln-Ala-Aib-Ser-Leu-Ala-Leu-Aib-Gln-Leuol) and chalciporin B (=Ac-Trp-Val-Aib-Val-Ala-Gln-Ala-Aib-Gln-Aib-Ala-Leu-Aib-Gln-Leuol) are presented. The IC-MS technique was applied for in situ peptaibol analysis of Sepedonium strains growing on Boletales, in particular S. chrysospermum infecting Xerocomus cf. badius. We found chrysospermins at the surface and within basidiomycete tissue, as well as in the cultivated parasite.
Collapse
Affiliation(s)
- Torsten Neuhof
- Technische Universität Berlin, Institut für Chemie, FG Biochemie und Molekulare Biologie, Berlin, Germany
| | | | | | | | | | | |
Collapse
|