1
|
Zhu P, Chen D, Jiang K, Zhu S, Su W, Van Schepdael A, Adams E. Differentiation of tetracyclines and their 4-epimers by mass spectrometry of the alkali metal adduct ions. Talanta 2023; 254:124201. [PMID: 36549141 DOI: 10.1016/j.talanta.2022.124201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Tetracyclines (TCs) are a family of broad-spectrum antibiotics. During the manufacturing process or storage, epimerization of tetracyclines could occur, leading to 4-epimers which are nearly inactive. From an analytical point of view, isomers are often difficult to distinguish. Previously, four pairs of TCs (oxytetracycline, tetracycline, doxycycline, chlortetracycline and their respective 4-epimers) were differentiated by mass spectrometry (MS) through protonated ions. However, they do not follow common rules and so it is still quite difficult to differentiate between them. In order to solve this, the four pairs were differentiated in the current study by collision induced dissociation (CID) spectra of the alkali adduct ions, including lithium, sodium and potassium. In the spectra of the sodium adducts, all studied tetracyclines showed a tendency to form [M+Na-NH3]+ ions, while the 4-epimers liked to form [M+Na-NH3-H2O]+ ions. Meanwhile, energy resolved mass spectrometry (ERMS) showed that all four 4-epimers' sodium adducts had the tendency to fragment at higher energy points. In the CID spectra of lithium adducts of TCs, a similar trend was observed for three pairs, except for doxycycline. For potassium adducts, the fragmentation was found to be less discriminative. As was derived from the 3D model, the four pairs all interact with the alkali metal through the dimethyl amino group at the C-4 position. The lithium adduct species also bound through the hydroxyl group at the C-5 position. If the TCs did not have a hydroxyl group at the C-5 position, they bound with the hydroxyl group at the C-6 position. For the same TC, with an increase of the diameter of the metal ion, the loss of H2O decreased gradually. As sodium adduct ions are common during the ionization process, TCs and their 4-epimers could be differentiated rapidly by ERMS of the sodium adduct ions.
Collapse
Affiliation(s)
- Peixi Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China; KU Leuven, University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, O&N2, PB, 923, 3000, Leuven, Belgium
| | - Dandan Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Kezhi Jiang
- Key Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, Zhejiang, China
| | - Siqi Zhu
- National Anti-Drug Laboratory Zhejiang Regional Center (Zhejiang Anti-Drug Technology Center), Hangzhou, Zhejiang, China
| | - Weike Su
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Ann Van Schepdael
- KU Leuven, University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, O&N2, PB, 923, 3000, Leuven, Belgium
| | - Erwin Adams
- KU Leuven, University of Leuven, Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, Herestraat 49, O&N2, PB, 923, 3000, Leuven, Belgium.
| |
Collapse
|
2
|
Zhu P, Zhou L, Jiang K, Su W, Van Schepdael A, Adams E. Diastereomer recognition of three pairs of tetracyclines by electrospray ionization mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9221. [PMID: 34761454 DOI: 10.1002/rcm.9221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Stereoisomer profiling is always a difficult issue. Based on the difference between diastereomers, usually because of steric hindrance, isomers can be differentiated by mass spectrometry (MS), although it is often not an easy task. In the current study, tetracycline, chlortetracycline and doxycycline could be distinguished from their respective 4-epimers by MS. METHODS The electrospray ionization tandem mass spectrometry (ESI-MSn ) analyses were carried out on a Bruker 3000plus ion trap mass spectrometer. For MS/MS experiments, the collision energy was set between 0.18 and 0.45 V to perform energy-resolved mass spectrometry (ERMS). Test solutions were prepared in methanol/water (90:10, v/v) at a concentration of 10 μg/mL. RESULTS Compared with the collision-induced dissociation (CID) spectrum of protonated tetracycline, the most abundant peak changed from m/z 427 to m/z 410 for 4-epitetracycline. For chlortetracycline and its 4-epimer, differences in relative abundance were observed too. In the CID spectrum of a fragment ion of doxycycline, the abundance of m/z 154 was relatively higher than for the 4-epimer, showing the same trend as in the CID spectra of the other two pairs of tetracyclines. CONCLUSIONS The CID spectra of tetracycline and chlortetracycline were different from those of their 4-epimers. The CID spectra of protonated doxycycline and its 4-epimer showed only a subtle difference, but the m/z 154 fragment ion in the CID spectra of the fragment ion at m/z 428 offers the possibility to differentiate both epimers.
Collapse
Affiliation(s)
- Peixi Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Zhejiang, Hangzhou, China
- Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, University of Leuven, Leuven, Belgium
| | - Luxi Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Zhejiang, Hangzhou, China
| | - Kezhi Jiang
- Key Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, Zhejiang, China
| | - Weike Su
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Zhejiang, Hangzhou, China
| | - Ann Van Schepdael
- Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, University of Leuven, Leuven, Belgium
| | - Erwin Adams
- Pharmaceutical Analysis, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, University of Leuven, Leuven, Belgium
| |
Collapse
|
3
|
Zhu P, Jiang K, Hong L, Su W, Van Schepdael A, Adams E. Diastereomer recognition of oxytetracycline and its 4-epimer by electrospray ionization mass spectrometry and mechanistic investigation. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:1013-1018. [PMID: 31734954 DOI: 10.1002/jms.4476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/05/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Peixi Zhu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven, University of Leuven, Herestraat 49, O&N2, PB 923, 3000, Leuven, Belgium
| | - Kezhi Jiang
- Key Laboratory of Organosilicon Chemistry and Material Technology, Hangzhou Normal University, Zhejiang, China
| | - Liya Hong
- Zhejiang Institute for Food and Drug Control, Hangzhou, 310053, Zhejiang, China
| | - Weike Su
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven, University of Leuven, Herestraat 49, O&N2, PB 923, 3000, Leuven, Belgium
| | - Erwin Adams
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven, University of Leuven, Herestraat 49, O&N2, PB 923, 3000, Leuven, Belgium
| |
Collapse
|
4
|
Lukežič T, Fayad AA, Bader C, Harmrolfs K, Bartuli J, Groß S, Lešnik U, Hennessen F, Herrmann J, Pikl Š, Petković H, Müller R. Engineering Atypical Tetracycline Formation in Amycolatopsis sulphurea for the Production of Modified Chelocardin Antibiotics. ACS Chem Biol 2019; 14:468-477. [PMID: 30747520 DOI: 10.1021/acschembio.8b01125] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To combat the increasing spread of antimicrobial resistance and the shortage of novel anti-infectives, one strategy for the development of new antibiotics is to optimize known chemical scaffolds. Here, we focus on the biosynthetic engineering of Amycolatopsis sulphurea for derivatization of the atypical tetracycline chelocardin and its potent broad-spectrum derivative 2-carboxamido-2-deacetyl-chelocardin. Heterologous biosynthetic genes were introduced into this chelocardin producer to modify functional groups and generate new derivatives. We demonstrate cooperation of chelocardin polyketide synthase with tailoring enzymes involved in biosynthesis of oxytetracycline from Streptomyces rimosus. An interesting feature of chelocardin, compared with oxytetracycline, is the opposite stereochemistry of the C4 amino group. Genes involved in C4 transamination and N,N-dimethylation of oxytetracycline were heterologously expressed in an A. sulphurea mutant lacking C4-aminotransferase. Chelocardin derivatives with opposite stereochemistry of the C4 amino group, as N,N-dimethyl- epi-chelocardin and N,N-dimethyl-2-carboxamido-2-deacetyl- epi-chelocardin, were produced only when the aminotransferase from oxytetracycline was coexpressed with the N-methyltransferase OxyT. Surprisingly, OxyT exclusively accepted intermediates carrying an S-configured amino group at C4 in chelocardin. Applying medicinal chemistry approaches, several 2-carboxamido-2-deacetyl- epi-chelocardin derivatives modified at C4 were produced. Analysis of the antimicrobial activities of the modified compounds demonstrated that the primary amine in the R configuration is a crucial structural feature for activity of chelocardin. Unexpectedly, C10 glycosylated chelocardin analogues were identified, thus revealing the glycosylation potential of A. sulphurea. However, efficient glycosylation of the chelocardin backbone occurred only after engineering of a dimethylated amino group at the C4 position in the opposite S configuration, which suggests some evolutionary remains of chelocardin glycosylation.
Collapse
Affiliation(s)
- Tadeja Lukežič
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
- Acies Bio, d.o.o., Tehnološki Park 21, 1000 Ljubljana, Slovenia
| | - Antoine Abou Fayad
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Chantal Bader
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Kirsten Harmrolfs
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Johannes Bartuli
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Sebastian Groß
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Urška Lešnik
- Acies Bio, d.o.o., Tehnološki Park 21, 1000 Ljubljana, Slovenia
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Fabienne Hennessen
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Jennifer Herrmann
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Špela Pikl
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Hrvoje Petković
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Rolf Müller
- Department of Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), and Department of
Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany
- German Centre for Infection Research (DZIF), Partner site Hannover-Braunschweig, 38124 Braunschweig, Germany
| |
Collapse
|