1
|
Label-free liquid crystal immunosensor for detection of HBD-2. Talanta 2019; 203:203-209. [DOI: 10.1016/j.talanta.2019.05.055] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/01/2019] [Accepted: 05/12/2019] [Indexed: 12/30/2022]
|
2
|
Csősz É, Tóth N, Deák E, Csutak A, Tőzsér J. Wound-Healing Markers Revealed by Proximity Extension Assay in Tears of Patients following Glaucoma Surgery. Int J Mol Sci 2018; 19:ijms19124096. [PMID: 30567303 PMCID: PMC6321131 DOI: 10.3390/ijms19124096] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/26/2018] [Accepted: 12/11/2018] [Indexed: 02/07/2023] Open
Abstract
Tears are a constantly available and highly valuable body fluid collectable by non-invasive techniques. Although it can give information on ocular status and be used for follow-ups, tear analysis is challenging due to the low amount of sample that is available. Proximity extension assay (PEA) allows for a sensitive and scalable analysis of multiple proteins in a single run from a one-µL sample, so we applied this technique and examined the amount of 184 proteins in tears collected at different time points after trabeculectomy. The success rate of this surgical intervention highly depends on proper wound healing; therefore, information on the process is indispensable. We observed significantly higher levels of IL-6 and MMP1 at the early time points (day one, two, and four) following trabeculectomy, and the protein amounts went back to the level observed before the surgery three months after the intervention. Patients with or without complications were tested, and proteins that have roles in the immune response and wound healing could be observed with altered frequency and amounts in the cases of patients with complications. Our results highlight the importance of inflammation in wound-healing complications, and at the same time, indicate the utility of PEA in tear analysis.
Collapse
Affiliation(s)
- Éva Csősz
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., 4032 Debrecen, Hungary.
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., 4032 Debrecen, Hungary.
| | - Noémi Tóth
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary.
| | - Eszter Deák
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., 4032 Debrecen, Hungary.
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary.
| | - Adrienne Csutak
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., 4032 Debrecen, Hungary.
| | - József Tőzsér
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., 4032 Debrecen, Hungary.
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., 4032 Debrecen, Hungary.
| |
Collapse
|
3
|
Perez JJ, Chen CY. Implementation of normalized retention time (iRT) for bottom-up proteomic analysis of the aminoglycoside phosphotransferase enzyme facilitating method distribution. Anal Bioanal Chem 2018; 411:4701-4708. [DOI: 10.1007/s00216-018-1377-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/15/2018] [Accepted: 09/13/2018] [Indexed: 01/05/2023]
|
4
|
Csősz É, Kalló G, Márkus B, Deák E, Csutak A, Tőzsér J. Quantitative body fluid proteomics in medicine - A focus on minimal invasiveness. J Proteomics 2016; 153:30-43. [PMID: 27542507 DOI: 10.1016/j.jprot.2016.08.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/27/2016] [Accepted: 08/08/2016] [Indexed: 01/07/2023]
Abstract
Identification of new biomarkers specific for various pathological conditions is an important field in medical sciences. Body fluids have emerging potential in biomarker studies especially those which are continuously available and can be collected by non-invasive means. Changes in the protein composition of body fluids such as tears, saliva, sweat, etc. may provide information on both local and systemic conditions of medical relevance. In this review, our aim is to discuss the quantitative proteomics techniques used in biomarker studies, and to present advances in quantitative body fluid proteomics of non-invasively collectable body fluids with relevance to biomarker identification. The advantages and limitations of the widely used quantitative proteomics techniques are also presented. Based on the reviewed literature, we suggest an ideal pipeline for body fluid analyses aiming at biomarkers discoveries: starting from identification of biomarker candidates by shotgun quantitative proteomics or protein arrays, through verification of potential biomarkers by targeted mass spectrometry, to the antibody-based validation of biomarkers. The importance of body fluids as a rich source of biomarkers is discussed. SIGNIFICANCE Quantitative proteomics is a challenging part of proteomics applications. The body fluids collected by non-invasive means have high relevance in medicine; they are good sources for biomarkers used in establishing the diagnosis, follow up of disease progression and predicting high risk groups. The review presents the most widely used quantitative proteomics techniques in body fluid analysis and lists the potential biomarkers identified in tears, saliva, sweat, nasal mucus and urine for local and systemic diseases.
Collapse
Affiliation(s)
- Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
| | - Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
| | - Bernadett Márkus
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
| | - Eszter Deák
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary; Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
| | - Adrienne Csutak
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
| | - József Tőzsér
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary.
| |
Collapse
|
5
|
Csősz É, Deák E, Kalló G, Csutak A, Tőzsér J. Diabetic retinopathy: Proteomic approaches to help the differential diagnosis and to understand the underlying molecular mechanisms. J Proteomics 2016; 150:351-358. [PMID: 27373871 DOI: 10.1016/j.jprot.2016.06.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/28/2016] [Indexed: 12/12/2022]
Abstract
Diabetic retinopathy is the most common diabetic eye disease and a leading cause of blindness among patients with diabetes. The appearance and the severity of the symptoms correlate with the duration of diabetes and poor blood glucose level management. Diabetic retinopathy is also categorized as a chronic low-level inflammatory disease; the high blood glucose level promotes the accumulation of the advanced glycation end products and leads to the stimulation of monocytes and macrophages. Examination of protein level alterations in tears using state-of the art proteomics techniques have identified several proteins as possible biomarkers for the different stages of the diabetic retinopathy. Some of the differentially expressed tear proteins have a role in the barrier function of tears linking the diabetic retinopathy with another eye complication of diabetes, namely the diabetic keratopathy resulting in impaired wound healing. Understanding the molecular events leading to the eye complications caused by hyperglycemia may help the identification of novel biomarkers as well as therapeutic targets in order to improve quality of life of diabetic patients. BIOLOGICAL SIGNIFICANCE Diabetic retinopathy (DR), the leading cause of blindness among diabetic patients can develop without any serious symptoms therefore the early detection is crucial. Because of the increasing prevalence there is a high need for improved screening methods able to diagnose DR as soon as possible. The non-invasive collection and the relatively high protein concentration make the tear fluid a good source for biomarker discovery helping the early diagnosis. In this work we have reviewed the administration of advanced proteomics techniques used in tear biomarker studies and the identified biomarkers with potential to improve the already existing screening methods for DR detection.
Collapse
Affiliation(s)
- Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Eszter Deák
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary; Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Hungary
| | - Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary
| | - Adrienne Csutak
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Hungary
| | - József Tőzsér
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Hungary.
| |
Collapse
|
6
|
Kalló G, Emri M, Varga Z, Ujhelyi B, Tőzsér J, Csutak A, Csősz É. Changes in the Chemical Barrier Composition of Tears in Alzheimer's Disease Reveal Potential Tear Diagnostic Biomarkers. PLoS One 2016; 11:e0158000. [PMID: 27327445 PMCID: PMC4915678 DOI: 10.1371/journal.pone.0158000] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/08/2016] [Indexed: 11/18/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases, with increasing prevalence affecting millions of people worldwide. Currently, only autopsy is able to confirm the diagnosis with a 100% certainty, therefore, biomarkers from body fluids obtained by non-invasive means provide an attractive alternative for the diagnosis of Alzheimer`s disease. Global changes of the protein profile were examined by quantitative proteomics; firstly, electrophoresis and LC-MS/MS were used, thereafter, SRM-based targeted proteomics method was developed and applied to examine quantitative changes of tear proteins. Alterations in the tear flow rate, total tear protein concentration and composition of the chemical barrier specific to AD were demonstrated, and the combination of lipocalin-1, dermcidin, lysozyme-C and lacritin was shown to be a potential biomarker, with an 81% sensitivity and 77% specificity.
Collapse
Affiliation(s)
- Gergő Kalló
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., 4032 Debrecen, Hungary
| | - Miklós Emri
- Department of Nuclear Medicine, Faculty of Medicine, University of Debrecen, Egyetem ter 1., 4032 Debrecen, Hungary
| | - Zsófia Varga
- Department of Psychiatry, Faculty of Medicine, University of Debrecen, Egyetem ter 1., 4032 Debrecen, Hungary
| | - Bernadett Ujhelyi
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., 4032 Debrecen, Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., 4032 Debrecen, Hungary
| | - Adrienne Csutak
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., 4032 Debrecen, Hungary
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., 4032 Debrecen, Hungary
- * E-mail:
| |
Collapse
|