1
|
Effects of Fertilization Approaches on Plant Development and Fertilizer Use of Citrus. PLANTS 2022; 11:plants11192547. [PMID: 36235416 PMCID: PMC9572086 DOI: 10.3390/plants11192547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/16/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022]
Abstract
Fertilization is an important part of citrus crop management. However, limited details are available about the fertilization approach on citrus plant development. A pot experiment for the fertilization approaches and fertigation levels were conducted in this study. Four fertilization approaches, namely, drip fertigation (DF), broadcast fertilization (CK+), hole fertilization (HF) and pour fertilization (PF) were tested. The fertigation level treatment included 100% (DF-337.5), 80% (DF-270), 60% (DF-202.5) and 40% (DF-135) fertilizer supply with DF, and the 100% fertilizer supply with broadcast fertilization were served as control (CK). The results showed that DF not only increased the absorptions of nitrogen (N), phosphorus (P) and potassium (K) but also promoted citrus plant height, stem diameter and dry weight. In fruit quality, DF had the highest fruit total soluble solid (TSS) and titratable acidity (TA) contents. For fertilizer loss, DF had the lowest N and K leaching losses of 9.26% and 4.05%, respectively, and the lowest N and K runoff losses among the approaches. Isotopic tracing with 15N indicated that DF had the highest fertilizer use efficiency. Based on the analysis of fertigation levels, DF approach with 60% fertilizer reduction could improve citrus plant development. Therefore, DF promoted citrus plant growth and fruit quality by accelerating fertilizer utilization and impairing fertilizer loss. The fertilizer amount in citrus production could be reduced significantly using DF.
Collapse
|
2
|
Harris E, Diaz-Pines E, Stoll E, Schloter M, Schulz S, Duffner C, Li K, Moore KL, Ingrisch J, Reinthaler D, Zechmeister-Boltenstern S, Glatzel S, Brüggemann N, Bahn M. Denitrifying pathways dominate nitrous oxide emissions from managed grassland during drought and rewetting. SCIENCE ADVANCES 2021; 7:eabb7118. [PMID: 33547069 PMCID: PMC7864578 DOI: 10.1126/sciadv.abb7118] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/07/2020] [Indexed: 05/19/2023]
Abstract
Nitrous oxide is a powerful greenhouse gas whose atmospheric growth rate has accelerated over the past decade. Most anthropogenic N2O emissions result from soil N fertilization, which is converted to N2O via oxic nitrification and anoxic denitrification pathways. Drought-affected soils are expected to be well oxygenated; however, using high-resolution isotopic measurements, we found that denitrifying pathways dominated N2O emissions during a severe drought applied to managed grassland. This was due to a reversible, drought-induced enrichment in nitrogen-bearing organic matter on soil microaggregates and suggested a strong role for chemo- or codenitrification. Throughout rewetting, denitrification dominated emissions, despite high variability in fluxes. Total N2O flux and denitrification contribution were significantly higher during rewetting than for control plots at the same soil moisture range. The observed feedbacks between precipitation changes induced by climate change and N2O emission pathways are sufficient to account for the accelerating N2O growth rate observed over the past decade.
Collapse
Affiliation(s)
- E Harris
- Plant, Soil and Ecosystem Processes Research Group, Department of Ecology, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria.
| | - E Diaz-Pines
- Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - E Stoll
- Plant, Soil and Ecosystem Processes Research Group, Department of Ecology, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - M Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Soil Science, Technical University of Munich, 85354 Freising, Germany
| | - S Schulz
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - C Duffner
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Soil Science, Technical University of Munich, 85354 Freising, Germany
| | - K Li
- Department of Materials, Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - K L Moore
- Department of Materials, Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - J Ingrisch
- Plant, Soil and Ecosystem Processes Research Group, Department of Ecology, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - D Reinthaler
- Plant, Soil and Ecosystem Processes Research Group, Department of Ecology, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - S Zechmeister-Boltenstern
- Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - S Glatzel
- Geoecology, Department of Geography and Regional Research, Faculty of Geosciences, Geography, and Astronomy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - N Brüggemann
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - M Bahn
- Plant, Soil and Ecosystem Processes Research Group, Department of Ecology, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Castellano‐Hinojosa A, Loick N, Dixon E, Matthews GP, Lewicka‐Szczebak D, Well R, Bol R, Charteris A, Cardenas L. Improved isotopic model based on 15 N tracing and Rayleigh-type isotope fractionation for simulating differential sources of N 2 O emissions in a clay grassland soil. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:449-460. [PMID: 30561863 PMCID: PMC6492082 DOI: 10.1002/rcm.8374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 06/09/2023]
Abstract
RATIONALE Isotopic signatures of N2 O can help distinguish between two sources (fertiliser N or endogenous soil N) of N2 O emissions. The contribution of each source to N2 O emissions after N-application is difficult to determine. Here, isotopologue signatures of emitted N2 O are used in an improved isotopic model based on Rayleigh-type equations. METHODS The effects of a partial (33% of surface area, treatment 1c) or total (100% of surface area, treatment 3c) dispersal of N and C on gaseous emissions from denitrification were measured in a laboratory incubation system (DENIS) allowing simultaneous measurements of NO, N2 O, N2 and CO2 over a 12-day incubation period. To determine the source of N2 O emissions those results were combined with both the isotope ratio mass spectrometry analysis of the isotopocules of emitted N2 O and those from the 15 N-tracing technique. RESULTS The spatial dispersal of N and C significantly affected the quantity, but not the timing, of gas fluxes. Cumulative emissions are larger for treatment 3c than treatment 1c. The 15 N-enrichment analysis shows that initially ~70% of the emitted N2 O derived from the applied amendment followed by a constant decrease. The decrease in contribution of the fertiliser N-pool after an initial increase is sooner and larger for treatment 1c. The Rayleigh-type model applied to N2 O isotopocules data (δ15 Nbulk -N2 O values) shows poor agreement with the measurements for the original one-pool model for treatment 1c; the two-pool models gives better results when using a third-order polynomial equation. In contrast, in treatment 3c little difference is observed between the two modelling approaches. CONCLUSIONS The importance of N2 O emissions from different N-pools in soil for the interpretation of N2 O isotopocules data was demonstrated using a Rayleigh-type model. Earlier statements concerning exponential increase in native soil nitrate pool activity highlighted in previous studies should be replaced with a polynomial increase with dependency on both N-pool sizes.
Collapse
Affiliation(s)
- Antonio Castellano‐Hinojosa
- Department of Microbiology, Faculty of PharmacyUniversity of Granada. Campus Cartuja18071GranadaSpain
- Department of Soil Microbiology and Symbiotic SystemsEstación Experimental del Zaidín18080GranadaSpain
| | - Nadine Loick
- Rothamsted Research, North WykeOkehamptonEX20 2SBUK
| | | | - G. Peter Matthews
- School of Geography, Earth and Environmental SciencesUniversity of PlymouthDavy Building, Drake CircusPlymouthPL4 8AAUK
| | | | - Reinhard Well
- Thünen Institute of Climate‐Smart AgricultureBundesallee 6538116BraunschweigGermany
| | - Roland Bol
- Agrosphere (IBG‐3)Institute of Bio‐ and GeosciencesForschungszentrum Jülich52428JülichGermany
| | | | | |
Collapse
|
4
|
Van Nguyen Q, Jensen LS, Bol R, Wu D, Triolo JM, Vazifehkhoran AH, Bruun S. Biogas Digester Hydraulic Retention Time Affects Oxygen Consumption Patterns and Greenhouse Gas Emissions after Application of Digestate to Soil. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:1114-1122. [PMID: 28991980 DOI: 10.2134/jeq2017.03.0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Knowledge about environmental impacts associated with the application of anaerobic digestion residue to agricultural land is of interest owing to the rapid proliferation of biogas plants worldwide. However, virtually no information exists concerning how soil-emitted NO is affected by the feedstock hydraulic retention time (HRT) in the biogas digester. Here, the O planar optode technique was used to visualize soil O dynamics following the surface application of digestates of the codigestion of pig slurry and agro-industrial waste. We also used NO isotopomer analysis of soil-emitted NO to determine the NO production pathways, i.e., nitrification or denitrification. Two-dimensional images of soil O indicated that anoxic and hypoxic conditions developed at 2.0- and 1.5-cm soil depth for soil amended with the digestate produced with 15-d (PO15) and 30-d (PO30) retention time, respectively. Total NO emissions were significantly lower for PO15 than PO30 due to the greater expansion of the anoxic zone, which enhanced NO reduction via complete denitrification. However, cumulative CO emissions were not significantly different between PO15 and PO30 for the entire incubation period. During incubation, NO emissions came from both nitrification and denitrification in amended soils. Increasing the HRT of the biogas digester appears to induce significant NO emissions, but it is unlikely to affect the NO production pathways after application to soil.
Collapse
|
5
|
Yuan Y, Chen H, Yuan W, Williams D, Walker JT, Shi W. Is biochar-manure co-compost a better solution for soil health improvement and N 2O emissions mitigation? SOIL BIOLOGY & BIOCHEMISTRY 2017; 113:14-25. [PMID: 29706674 PMCID: PMC5920545 DOI: 10.1016/j.soilbio.2017.05.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Land application of compost has been a promising remediation strategy for soil health and environmental quality, but substantial emissions of greenhouse gases, especially N2O, need to be controlled during making and using compost of high N-load wastes, such as chicken manure. Biochar as a bulking agent for composting has been proposed as a novel approach to solve this issue, due to large surface area and porosity, and thus high ion exchange and adsorption capacity. Here, we compared the impacts of biochar-chicken manure co-compost (BM) and chicken manure compost (M) on soil biological properties and processes in a 120-d microcosm experiment at the soil moisture of 60% water-filled pore space. Our results showed that BM and M addition significantly enhanced soil total C and N, inorganic and KCl-extractable organic N, microbial biomass C and N, cellulase enzyme activity, abundance of N2O-producing bacteria and fungi, and gas emissions of N2O and CO2. However, compared to the M treatment, BM significantly reduced soil CO2 and N2O emissions by 35% and 27%, respectively, over the experimental period. The 15N-N2O site preference, i.e., difference between 15N-N2O in the center position (δ15Nα) and the end position (δ15Nβ), was ~17‰ for M and ~26‰ for BM during the first week of incubation, suggesting that BM suppressed N2O from bacterial denitrification and/or nitrifier denitrification. This inference was well aligned with the observation that soil glucosaminidase activity and nirK gene abundance were lower in BM than M treatment. Further, soil peroxidase activity was greater in BM than M treatment, implying soil organic C was more stable in BM treatment. Our data demonstrated that the biochar-chicken manure co-compost could substantially reduce soil N2O emissions compared to chicken manure compost, via controls on soil organic C stabilization and the activities of microbial functional groups, especially bacterial denitrifiers.
Collapse
Affiliation(s)
- Yinghong Yuan
- Institute of Ecology and Environmental Science, Nanchang Institute of Technology, Nanchang 330099, China
| | - Huaihai Chen
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Environmental Sciences Division, National Exposure Research Laboratory, U.S. Environmental Protection Agency, RTP, NC, USA
- Air Pollution Prevention and Control Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, RTP, NC, USA
| | - Wenqiao Yuan
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - David Williams
- Environmental Sciences Division, National Exposure Research Laboratory, U.S. Environmental Protection Agency, RTP, NC, USA
| | - John T Walker
- Air Pollution Prevention and Control Division, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, RTP, NC, USA
| | - Wei Shi
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|