1
|
Kato A, Ito M, Sanaki T, Okuda T, Tsuchiya N, Yoshimoto R, Yukioka H. Acsl1 is essential for skin barrier function through the activation of linoleic acid and biosynthesis of ω-O-acylceramide in mice. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159085. [PMID: 34813948 DOI: 10.1016/j.bbalip.2021.159085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/27/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
The long-chain acyl-CoA synthase1 (Acsl1) is a major enzyme that converts long-chain fatty acids to acyl-CoAs. The role of Acsl1 in energy metabolism has been elucidated in the adipose tissue, heart, and skeletal muscle. Here, we demonstrate that systemic deficiency of Acsl1 caused severe skin barrier defects, leading to embryonic lethality. Acsl1 mRNA and protein are expressed in the Acsl1+/+ epidermis, which are absent in Acsl1-/- mice. In Acsl1-/- mice, epidermal ceramide [EOS] (Cer[EOS]) containing ω-O-esterified linoleic acid, a lipid essential for the skin barrier, was significantly reduced. Conversely, ω-hydroxy ceramide (Cer[OS]), a precursor of Cer[EOS], was increased. Moreover, the levels of triglyceride (TG) species containing linoleic acids were lower in Acsl1-/- mice, whereas those not containing linoleic acid were comparable to Acsl1+/+ mice. As TG is considered to work as a reservoir of linoleic acid for the biosynthesis of Cer[EOS] from Cer[OS], our results suggest that Acsl1 plays an essential role in ω-O-acylceramide synthesis by providing linoleic acid for ω-O-esterification. Therefore, our findings identified a new biological role of Acsl1 as a regulator of the skin barrier.
Collapse
Affiliation(s)
- Ayumi Kato
- Laboratory for Innovative Therapy Research, Shionogi & Co., Ltd, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan.
| | - Mana Ito
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Takao Sanaki
- Laboratory for Drug Discovery and Disease Research, Shionogi & Co., Ltd, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Tomohiko Okuda
- Laboratory for Innovative Therapy Research, Shionogi & Co., Ltd, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Noriko Tsuchiya
- Project Management Department, Shionogi & Co., Ltd, 8F (Reception) / 9F, Nissay Yodoyabashi East, 3-13, Imabashi 3-chome, Chuo-ku, Osaka 541-0042, Japan; Research Planning Department, Shionogi & Co., Ltd, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Ryo Yoshimoto
- Laboratory for Innovative Therapy Research, Shionogi & Co., Ltd, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| | - Hideo Yukioka
- Laboratory for Innovative Therapy Research, Shionogi & Co., Ltd, 3-1-1 Futaba-cho, Toyonaka, Osaka 561-0825, Japan
| |
Collapse
|
2
|
Cebo M, Schlotterbeck J, Gawaz M, Chatterjee M, Lämmerhofer M. Simultaneous targeted and untargeted UHPLC-ESI-MS/MS method with data-independent acquisition for quantification and profiling of (oxidized) fatty acids released upon platelet activation by thrombin. Anal Chim Acta 2020; 1094:57-69. [DOI: 10.1016/j.aca.2019.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/06/2019] [Indexed: 12/19/2022]
|
3
|
Sanaki T, Wakabayashi M, Yoshioka T, Yoshida R, Shishido T, Hall WW, Sawa H, Sato A. Inhibition of dengue virus infection by 1-stearoyl-2-arachidonoyl-phosphatidylinositol in vitro. FASEB J 2019; 33:13866-13881. [PMID: 31638831 DOI: 10.1096/fj.201901095rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Dengue fever is an acute febrile infectious disease caused by dengue virus (DENV). Despite the significant public health concerns posed by DENV, there are currently no effective anti-DENV therapeutic agents. To develop such drugs, a better understanding of the detailed mechanisms of DENV infection is needed. Both lipid metabolism and lipid synthesis are activated in DENV-infected cells, so we used lipid screening to identify potential antiviral lipid molecules. We identified 1-stearoyl-2-arachidonoyl-phosphatidylinositol (SAPI), which is the most abundant endogenous phosphatidylinositol (PI) molecular species, as an anti-DENV lipid molecule. SAPI suppressed the cytopathic effects induced by DENV2 infection as well as the replication of all DENV serotypes without inhibiting the entry of DENV2 into host cells. However, no other PI molecular species or PI metabolites, including lysophosphatidylinositols and phosphoinositides, displayed anti-DENV2 activity. Furthermore, SAPI suppressed the production of DENV2 infection-induced cytokines and chemokines, including C-C motif chemokine ligand (CCL)5, CCL20, C-X-C chemokine ligand 8, IL-6, and IFN-β. SAPI also suppressed the TNF-α production induced by LPS stimulation in macrophage cells differentiated from THP-1 cells. Our results demonstrated that SAPI is an endogenous inhibitor of DENV and modulated inflammatory responses in DENV2-infected cells, at least in part via TLR 4.-Sanaki, T., Wakabayashi, M., Yoshioka, T., Yoshida, R., Shishido, T., Hall, W. W., Sawa, H., Sato, A. Inhibition of dengue virus infection by 1-stearoyl-2-arachidonoyl-phosphatidylinositol in vitro.
Collapse
Affiliation(s)
- Takao Sanaki
- Drug Discovery and Disease Research Laboratory, Osaka, Japan.,Division of Anti-Virus Drug Research, Hokkaido University, Sapporo, Japan
| | - Masato Wakabayashi
- Biomarker Research and Development Department, Shionogi and Company, Limited, Osaka, Japan
| | - Takeshi Yoshioka
- Biomarker Research and Development Department, Shionogi and Company, Limited, Osaka, Japan
| | - Ryu Yoshida
- Drug Discovery and Disease Research Laboratory, Osaka, Japan
| | - Takao Shishido
- Drug Discovery and Disease Research Laboratory, Osaka, Japan
| | - William W Hall
- Global Institution for Collaborative Research and Education (Gi-CoRE), Hokkaido University, Sapporo, Japan.,Global Virus Network, Baltimore, Maryland, USA; and.,Center for Research in Infectious Diseases, University College of Dublin, Dublin, Ireland
| | - Hirofumi Sawa
- Global Institution for Collaborative Research and Education (Gi-CoRE), Hokkaido University, Sapporo, Japan.,Global Virus Network, Baltimore, Maryland, USA; and.,Division of Molecular Pathobiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Akihiko Sato
- Drug Discovery and Disease Research Laboratory, Osaka, Japan.,Division of Anti-Virus Drug Research, Hokkaido University, Sapporo, Japan
| |
Collapse
|
4
|
Wutkowski A, Krajewski M, Bagwan N, Schäfer M, Paudyal BR, Schaible UE, Schwudke D. Software-aided quality control of parallel reaction monitoring based quantitation of lipid mediators. Anal Chim Acta 2018; 1037:168-176. [PMID: 30292291 DOI: 10.1016/j.aca.2018.01.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 12/19/2022]
Abstract
We characterized the performance of a micro-flow LC-ESI-MS2 approach to analyze lipid mediators (LMs) and polyunsaturated fatty acids (PUFA) that was optimized for SPE free lipid extraction. Tandem mass spectrometry was exclusively performed in parallel reaction monitoring (PRM) mode using TOF and Orbitrap analyzers. This acquisition strategy allowed in addition to quantitation by specific quantifier ions to perform spectrum comparisons using full MS2 spectra information of the analyte. Consequently, we developed a dedicated software SpeCS that allows to 1) process raw peak lists, 2) generate customized spectral libraries, 3) test specificity of quantifier ions and 4) perform spectrum comparisons. The dedicated scoring algorithm is based on signal matching and Spearman's rank correlation of intensities of matched signal. The algorithm was evaluated in respect of its specificity to distinguish structural related LMs on both instrument platforms. We show how high resolution mass spectrometry is beneficial to distinguish co-eluted LM isomers and provide a generalized quality control procedure for PRM. The applicability of the approach was evaluated analyzing the lipid mediator response during M. tuberculosis infection in the mouse lung.
Collapse
Affiliation(s)
- Adam Wutkowski
- Division of Bioanalytical Chemistry, Research Center Borstel, Parkallee 10, Borstel, Germany
| | - Matthias Krajewski
- Division of Bioanalytical Chemistry, Research Center Borstel, Parkallee 10, Borstel, Germany
| | - Navratan Bagwan
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Mathias Schäfer
- Institute of Organic Chemistry, University of Cologne, Greinstraße 4, 50939 Köln, Germany
| | - Bhesh R Paudyal
- Department of Cellular Microbiology, Research Center Borstel, Parkallee 10, Borstel, Germany
| | - Ulrich E Schaible
- Department of Cellular Microbiology, Research Center Borstel, Parkallee 10, Borstel, Germany
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Research Center Borstel, Parkallee 10, Borstel, Germany.
| |
Collapse
|
5
|
Hwang SH, Wagner K, Xu J, Yang J, Li X, Cao Z, Morisseau C, Lee KSS, Hammock BD. Chemical synthesis and biological evaluation of ω-hydroxy polyunsaturated fatty acids. Bioorg Med Chem Lett 2016; 27:620-625. [PMID: 28025003 DOI: 10.1016/j.bmcl.2016.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/30/2016] [Accepted: 12/01/2016] [Indexed: 01/17/2023]
Abstract
ω-Hydroxy polyunsaturated fatty acids (PUFAs), natural metabolites from arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were prepared via convergent synthesis approach using two key steps: Cu-mediated CC bond formation to construct methylene skipped poly-ynes and a partial alkyne hydrogenation where the presence of excess 2-methyl-2-butene as an additive that is proven to be critical for the success of partial reduction of the poly-ynes to the corresponding cis-alkenes without over-hydrogenation. The potential biological function of ω-hydroxy PUFAs in pain was evaluated in naive rats. Following intraplantar injection, 20-hydroxyeicosatetraenoic acid (20-HETE, ω-hydroxy ARA) generated an acute decrease in paw withdrawal thresholds in a mechanical nociceptive assay indicating pain, but no change was observed from rats which received either 20-hydroxyeicosapentaenoic acid (20-HEPE, ω-hydroxy EPA) or 22-hydroxydocosahexaenoic acid (22-HDoHE, ω-hydroxy DHA). We also found that both 20-HEPE and 22-HDoHE are more potent than 20-HETE to activate murine transient receptor potential vanilloid receptor1 (mTRPV1).
Collapse
Affiliation(s)
- Sung Hee Hwang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Karen Wagner
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jian Xu
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Development, China Pharmaceutical University, 639, Longmian Ave, Jiangning District, Nanjing, Jiangsu 211198, PR China
| | - Jun Yang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Xichun Li
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Development, China Pharmaceutical University, 639, Longmian Ave, Jiangning District, Nanjing, Jiangsu 211198, PR China
| | - Zhengyu Cao
- Jiangsu Provincial Key Laboratory of TCM Evaluation and Development, China Pharmaceutical University, 639, Longmian Ave, Jiangning District, Nanjing, Jiangsu 211198, PR China
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Kin Sing Stephen Lee
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|