1
|
De Benedittis S, Gaspari M, Magariello A, Spadafora P, Citrigno L, Romeo N, Qualtieri A. LC-MALDI-TOF ISD MS analysis is an effective, simple and rapid method of investigation for histones characterization: Application to EBV lymphoblastoid cell lines. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4712. [PMID: 33851762 DOI: 10.1002/jms.4712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
This contribution is the result of our progressive engagement to develop and to apply a top-down liquid chromatography (LC) matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) (LC-MALDI-TOF) analysis for the histone post-translational modifications (PTMs) and variants characterization, mainly in order to provide comprehensive and fast results. The histone post-translational modifications and the differential expression of the histone variants play an essential role both in the DNA packaging mechanism in chromosomes and in the regulation of gene expression in different cellular processes, also in response to molecular agents of environmental origin. This epigenetic mechanism is widely studied in different field such as cellular differentiation, development and in the understanding of mechanisms underlying diseases. The characterization of histone PTMs has traditionally performed by antibodies-based assay, but immunological methods have significant limits, and today systems that use mass spectrometry are increasingly employed. We evaluated an in-source decay (ISD) analysis for the histone investigation on human lymphoblastoid cells, and by this approach, we were able to identify and quantify several PTMs such as the di-methylation in the lysine 20 and the acetylation in the lysine 16 in H4 and the mono-methylation, di-methylation and trimethylations at K9 of the histone H3.1. Moreover, we detected and quantified in the same H2B spectrum the prevalent H2B 1C/2E type but also the minor H2B 1D, 1M and 1B/1L/1N, 1O/2F, 1J/1K variants. In this work, we show that MALDI-ISD represents an excellent methodology to obtain global information on histone PTMs and variants from cells in culture, with rapidity and simplicity of execution. Finally, this is a useful approach to get label-free relative quantitative data of histone variants and PTMs.
Collapse
Affiliation(s)
- Selene De Benedittis
- National Research Council, Institute for Biomedical Research and Innovation (IRIB), Cosenza, Italy
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Marco Gaspari
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Angela Magariello
- National Research Council, Institute for Agricultural and Forest Systems in the Mediterranean (ISAFOM), Cosenza, Italy
| | - Patrizia Spadafora
- National Research Council, Institute for Biomedical Research and Innovation (IRIB), Cosenza, Italy
| | - Luigi Citrigno
- National Research Council, Institute for Biomedical Research and Innovation (IRIB), Cosenza, Italy
| | - Nelide Romeo
- National Research Council, Institute for Agricultural and Forest Systems in the Mediterranean (ISAFOM), Cosenza, Italy
| | - Antonio Qualtieri
- National Research Council, Institute for Biomedical Research and Innovation (IRIB), Cosenza, Italy
| |
Collapse
|
2
|
Saikusa K, Hidaka H, Izumi S, Akashi S. Mass Spectrometric Characterization of Histone H3 Isolated from in-Vitro Reconstituted and Acetylated Nucleosome Core Particle. ACTA ACUST UNITED AC 2020; 9:A0090. [PMID: 33224699 PMCID: PMC7674858 DOI: 10.5702/massspectrometry.a0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/16/2020] [Indexed: 11/23/2022]
Abstract
Post-translational modifications (PTMs) of histone N-terminal tails in nucleosome core particle (NCP), such as acetylation, play crucial roles in regulating gene expression. To unveil the regulation mechanism, atomic-level structural analysis of in-vitro modified NCP is effective with verifying the PTMs of histones. So far, identification of PTMs of NCP originating from living cells has mainly been performed using mass spectrometry (MS) techniques, such as bottom-up approach. The bottom-up approach is the most established method for protein characterization, but it does not always provide sufficient information on the acetylated sites of lysine residues in the histone tails if trypsin digestion is carried out. For histone proteins, which have many basic amino acids, trypsin generates too many short fragments that cannot be perfectly analyzed by tandem MS. In this study, we investigated the in vitro acetylation sites in the histone H3 tail using a top-down sequence analysis, matrix-assisted laser desorption/ionization in-source decay (MALDI-ISD) experiment, in combination with aminopeptidase digestion. Aminopeptidase can cleave peptide bonds one-by-one from the N-terminus of peptides or proteins, generating N-terminally truncated peptides and/or proteins. As a result, it was identified that this method enables sequence characterization of the entire region of the H3 tail. Also, application of this method to H3 in in-vitro acetylated NCP enabled assigning acetylation sites of H3. Thus, this method was found to be effective for obtaining information on in-vitro acetylation of NCP for structural biology study.
Collapse
Affiliation(s)
- Kazumi Saikusa
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan.,Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Haruna Hidaka
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Shunsuke Izumi
- Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Satoko Akashi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
3
|
Kwak HG, Suzuki T, Dohmae N. Global mapping of post-translational modifications on histone H3 variants in mouse testes. Biochem Biophys Rep 2017; 11:1-8. [PMID: 28955761 PMCID: PMC5614684 DOI: 10.1016/j.bbrep.2017.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 05/23/2017] [Indexed: 11/17/2022] Open
Abstract
Mass spectrometry (MS)-based characterization is important in proteomic research for verification of structural features and functional understanding of gene expression. Post-translational modifications (PTMs) such as methylation and acetylation have been reported to be associated with chromatin remodeling during spermatogenesis. Although antibody- and MS-based approaches have been applied for characterization of PTMs on H3 variants during spermatogenesis, variant-specific PTMs are still underexplored. We identified several lysine modifications in H3 variants, including testis-specific histone H3 (H3t), through their successful separation with MS-based strategy, based on differences in masses, retention times, and presence of immonium ions. Besides methylation and acetylation, we detected formylation as a novel PTM on H3 variants in mouse testes. These patterns were also observed in H3t. Our data provide high-throughput structural information about PTMs on H3 variants in mouse testes and show possible applications of this strategy in future proteomic studies on histone PTMs. Various post-translational modifications in histone H3 variants were characterized in the mouse testes. We specifically identified similar modified patterns based on immonium ions. Novel modified lysines in testis-specific H3 histone, H3t, were verified. Our approach will be helpful for the discovery of other novel or specific modifications during spermatogenesis.
Collapse
Key Words
- DTT, dithiothreitol
- ESI-TRAP, electrospray TRAP
- FDR, false discovery rate
- H2SO4, sulfuric acid
- HCD, high-energy collision dissociation
- HFBA, heptafluorobutyric acid
- HPLC, high performance liquid chromatography
- ISD, in source decay
- MALDI, matrix-assisted laser desorption/ionization
- MS, mass spectrometry
- Mass spectrometry
- PTMs, post-translational modifications
- Post-translational modification
- RP, reverse phase
- SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- Spermatogenesis
- TCA, trichloroacetic acid
- TFA, trifluoroacetic acid
- Testis-specific H3 histone
Collapse
|