1
|
Van Leeuwen JA, Hartog N, Gerritse J, Gallacher C, Helmus R, Brock O, Parsons JR, Hassanizadeh SM. The dissolution and microbial degradation of mobile aromatic hydrocarbons from a Pintsch gas tar DNAPL source zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137797. [PMID: 32208248 DOI: 10.1016/j.scitotenv.2020.137797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Source zones containing tar, a dense non-aqueous phase liquid (DNAPL), can contaminate groundwater for centuries. A common occurrence of tar is at former Pintsch gas factories. Little is known about the composition and fate of contaminants dissolving from Pintsch gas tar DNAPL. In this study, we determined the composition and water-soluble characteristics of mobile aromatic hydrocarbons and their biodegradation metabolites in the DNAPL contaminated groundwater at a former Pintsch gas tar plant. We assessed the factors that determine the fate of observed groundwater contaminants. Measured values of density (1.03-1.06 kg/m3) and viscosity (18.6-39.4 cP) were found to be relatively low compared to common coal tars. Analysis showed that unlike common coal tars phenanthrene is the primary component rather than naphthalene. Moreover, it was found that Pintsch gas tar contains a relatively high amount of light molecular aromatic hydrocarbon compounds, such as benzene, toluene, ethylbenzene and xylenes (BTEX). Less commonly reported components, such as styrene, ethyltoluenes, di-ethylbenzene, 1,2,4,5-tetramethylbenzene, were also detected in water extracts from Pintsch gas tar. Moreover, 46 relatively hydrophilic metabolites were found within the tar samples. Metabolites present within the tar suggest biodegradation of mobile aromatic Pintsch gas tar compounds occurred near the DNAPL. Based on eleven detected suspect metabolites, a novel anaerobic biodegradation pathway is proposed for indene. Overall, our findings indicate that Pintsch gas tar has higher invasive and higher flux properties than most coal tars due to its relatively low density, low viscosity and, high content of water-soluble compounds. The partitioning of contaminants from multi-component DNAPL into the aqueous phase and re-dissolution of their slightly less hydrophobic metabolites back from the aqueous phase into the DNAPL is feasible and demonstrates the complexity of assessing degradation processes within a source zone.
Collapse
Affiliation(s)
- J A Van Leeuwen
- Utrecht University, Princetonplein 9, Utrecht 3584 CC, Netherlands; Deltares, Princetonlaan 8, Utrecht 3584 CB, Netherlands.
| | - N Hartog
- Utrecht University, Princetonplein 9, Utrecht 3584 CC, Netherlands; KWR Water Cycle Research Institute, Groningenhaven 7, Nieuwegein 3433 PE, Netherlands
| | - J Gerritse
- Deltares, Princetonlaan 8, Utrecht 3584 CB, Netherlands
| | - C Gallacher
- University of Strathclyde, 75 Montrose St., Glasgow, UK
| | - R Helmus
- University of Amsterdam, IBED, Science Park 904, Amsterdam 1098 XH, Netherlands
| | - O Brock
- University of Amsterdam, IBED, Science Park 904, Amsterdam 1098 XH, Netherlands
| | - J R Parsons
- University of Amsterdam, IBED, Science Park 904, Amsterdam 1098 XH, Netherlands
| | - S M Hassanizadeh
- Utrecht University, Princetonplein 9, Utrecht 3584 CC, Netherlands
| |
Collapse
|
2
|
Weggler BA, Gruber B, Teehan P, Jaramillo R, Dorman FL. Inlets and sampling. SEP SCI TECHNOL 2020. [DOI: 10.1016/b978-0-12-813745-1.00005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
3
|
Bowman DT, Jobst KJ, Helm PA, Kleywegt S, Diamond ML. Characterization of Polycyclic Aromatic Compounds in Commercial Pavement Sealcoat Products for Enhanced Source Apportionment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:3157-3165. [PMID: 30753781 DOI: 10.1021/acs.est.8b06779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Coal tar-based sealcoat (CTSC) products are an urban source of polycyclic aromatic compounds (PACs) to the environment. However, efforts to assess the environmental fate and impacts of CTSC-derived PACs are hindered by the ubiquity of (routinely monitored) PACs released from other environmental sources. To advance source identification of CTSC-derived PACs, we use comprehensive two-dimensional gas chromatography-high resolution mass spectrometry (GC × GC/HRMS) to characterize the major and minor components of CTSC products in comparison to those in other sources of PACs, viz., asphalt-based sealcoat products, diesel particulate, diesel fuel, used motor oil and roofing shingles. GC × GC/HRMS analyses of CTSC products led to the confident assignment of compounds with 88 unique elemental compositions, which includes a set of 240 individual PACs. Visualization of the resulting profiles using Kendrick mass defect plots and hierarchical cluster analysis highlighted compositional differences between the sources. Profiles of alkylated PAHs, and heteroatomic (N, O, S) PACs enabled greater specificity in source differentiation. Isomers of specific polycyclic aromatic nitrogen heterocycles (PANHs) were diagnostic for coal tar-derived PAC sources. The compounds identified and methods used for this identification are anticipated to aid in future efforts on risk assessment and source apportionment of PACs in environmental matrices.
Collapse
Affiliation(s)
- David T Bowman
- Department of Earth Sciences , University of Toronto , 22 Russell Street , Toronto , Ontario M5S 3B1 , Canada
| | - Karl J Jobst
- Ministry of Environment, Conservation and Parks , 125 Resources Road , Toronto , Ontario M9P 3V6 , Canada
- Department of Chemistry and Chemical Biology , McMaster University , 1280 Main Street West , Hamilton , Ontario L8S 4M1 , Canada
| | - Paul A Helm
- Ministry of Environment, Conservation and Parks , 125 Resources Road , Toronto , Ontario M9P 3V6 , Canada
- School of the Environment , University of Toronto , 33 Willcocks Street , Toronto , Ontario M5S 3E8 , Canada
| | - Sonya Kleywegt
- Ministry of Environment, Conservation and Parks , 125 Resources Road , Toronto , Ontario M9P 3V6 , Canada
| | - Miriam L Diamond
- Department of Earth Sciences , University of Toronto , 22 Russell Street , Toronto , Ontario M5S 3B1 , Canada
- School of the Environment , University of Toronto , 33 Willcocks Street , Toronto , Ontario M5S 3E8 , Canada
| |
Collapse
|