1
|
Wei J, Zhang X, Xia L, Yuan W, Zhou Z, Brüggmann N. Role of chemical reactions in the nitrogenous trace gas emissions and nitrogen retention: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152141. [PMID: 34871694 DOI: 10.1016/j.scitotenv.2021.152141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/07/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
Increasing evidence has been found that chemical reactions affect significantly the terrestrial nitrogen (N) cycle, which was previously assumed to be mainly dominated by biological processes. Due to the limitation of knowledge and analytical techniques, it is currently challenging to discern the contribution of biotic and abiotic processes to the terrestrial N cycle for geobiologists and biogeochemists alike. To better understand the role of abiotic reactions in the terrestrial N cycle, it is necessary to comprehend the chemical controls on nitrogenous trace gas emissions and N retention in soil under various environmental conditions. In this manuscript, we assess the role of abiotic reactions in nitrous oxide (N2O) and nitric oxide (NO) emissions as well as N retention through a meta-analysis using all related peer-reviewed publications before August 2020. Results show that abiotic reactions contributed 29.3-37.7% and 44.0-57.0% to the total N2O emission and N retention, representing 3.7-4.7 and 4.0-6.0 Tg year-1 of global terrestrial N2O emission and N retention, respectively. Much higher NO production was observed in sterilized soils than that in unsterilized treatments indicating the major contribution of chemical reactions to NO emission and rapid microbial reduction of NO to N2O and N2. Chemical hydroxylamine oxidation accounts for the largest abiotic contribution to N2O emission, while chemical nitrite reduction and fixation represent for the largest contribution to abiotic NO production and soil N retention, respectively. Factors influencing the abiotic processes include pH, total organic carbon (TOC), total nitrogen (TN), the ratio of carbon to nitrogen (C/N), and transition metals. These results broadened our knowledge about the mechanisms involved in chemical N reactions and provided a simplified estimation about their contribution to nitrogenous trace gas emission and N retention, which is meaningful to further study interactions of biologically and chemically mediated reactions in biogeochemical N cycle.
Collapse
Affiliation(s)
- Jing Wei
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China; Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Wilhelm-Johnen-Straße, 52425 Jülich, Germany; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China.
| | - Xinying Zhang
- College of Environmental and Chemical Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Longlong Xia
- Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology, Garmisch-Partenkirchen 82467, Germany
| | - Wenping Yuan
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China; Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-sen University, Zhuhai 519082, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 519082, China
| | - Zhanyan Zhou
- School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai, Guangdong 519082, China
| | - Nicolas Brüggmann
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| |
Collapse
|
2
|
Roscioli JR, Meredith LK, Shorter JH, Gil-Loaiza J, Volkmann THM. Soil gas probes for monitoring trace gas messengers of microbial activity. Sci Rep 2021; 11:8327. [PMID: 33859224 PMCID: PMC8050213 DOI: 10.1038/s41598-021-86930-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/15/2021] [Indexed: 02/02/2023] Open
Abstract
Soil microbes vigorously produce and consume gases that reflect active soil biogeochemical processes. Soil gas measurements are therefore a powerful tool to monitor microbial activity. Yet, the majority of soil gases lack non-disruptive subsurface measurement methods at spatiotemporal scales relevant to microbial processes and soil structure. To address this need, we developed a soil gas sampling system that uses novel diffusive soil probes and sample transfer approaches for high-resolution sampling from discrete subsurface regions. Probe sampling requires transferring soil gas samples to above-ground gas analyzers where concentrations and isotopologues are measured. Obtaining representative soil gas samples has historically required balancing disruption to soil gas composition with measurement frequency and analyzer volume demand. These considerations have limited attempts to quantify trace gas spatial concentration gradients and heterogeneity at scales relevant to the soil microbiome. Here, we describe our new flexible diffusive probe sampling system integrated with a modified, reduced volume trace gas analyzer and demonstrate its application for subsurface monitoring of biogeochemical cycling of nitrous oxide (N2O) and its site-specific isotopologues, methane, carbon dioxide, and nitric oxide in controlled soil columns. The sampling system observed reproducible responses of soil gas concentrations to manipulations of soil nutrients and redox state, providing a new window into the microbial response to these key environmental forcings. Using site-specific N2O isotopologues as indicators of microbial processes, we constrain the dynamics of in situ microbial activity. Unlocking trace gas messengers of microbial activity will complement -omics approaches, challenge subsurface models, and improve understanding of soil heterogeneity to disentangle interactive processes in the subsurface biome.
Collapse
Affiliation(s)
- Joseph R. Roscioli
- grid.276808.30000 0000 8659 5172Aerodyne Research, Inc., Billerica, MA 01821 USA
| | - Laura K. Meredith
- grid.134563.60000 0001 2168 186XSchool of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721 USA ,grid.134563.60000 0001 2168 186XUniversity of Arizona, Biosphere 2, Oracle, AZ 85623 USA
| | - Joanne H. Shorter
- grid.276808.30000 0000 8659 5172Aerodyne Research, Inc., Billerica, MA 01821 USA
| | - Juliana Gil-Loaiza
- grid.134563.60000 0001 2168 186XSchool of Natural Resources and the Environment, University of Arizona, Tucson, AZ 85721 USA
| | - Till H. M. Volkmann
- grid.134563.60000 0001 2168 186XUniversity of Arizona, Biosphere 2, Oracle, AZ 85623 USA ,grid.435925.c0000 0001 2289 0372Applied Intelligence, Accenture, Kronberg Im Taunus, 61476 Hesse, Germany
| |
Collapse
|
3
|
Harris E, Diaz-Pines E, Stoll E, Schloter M, Schulz S, Duffner C, Li K, Moore KL, Ingrisch J, Reinthaler D, Zechmeister-Boltenstern S, Glatzel S, Brüggemann N, Bahn M. Denitrifying pathways dominate nitrous oxide emissions from managed grassland during drought and rewetting. SCIENCE ADVANCES 2021; 7:eabb7118. [PMID: 33547069 PMCID: PMC7864578 DOI: 10.1126/sciadv.abb7118] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/07/2020] [Indexed: 05/19/2023]
Abstract
Nitrous oxide is a powerful greenhouse gas whose atmospheric growth rate has accelerated over the past decade. Most anthropogenic N2O emissions result from soil N fertilization, which is converted to N2O via oxic nitrification and anoxic denitrification pathways. Drought-affected soils are expected to be well oxygenated; however, using high-resolution isotopic measurements, we found that denitrifying pathways dominated N2O emissions during a severe drought applied to managed grassland. This was due to a reversible, drought-induced enrichment in nitrogen-bearing organic matter on soil microaggregates and suggested a strong role for chemo- or codenitrification. Throughout rewetting, denitrification dominated emissions, despite high variability in fluxes. Total N2O flux and denitrification contribution were significantly higher during rewetting than for control plots at the same soil moisture range. The observed feedbacks between precipitation changes induced by climate change and N2O emission pathways are sufficient to account for the accelerating N2O growth rate observed over the past decade.
Collapse
Affiliation(s)
- E Harris
- Plant, Soil and Ecosystem Processes Research Group, Department of Ecology, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria.
| | - E Diaz-Pines
- Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - E Stoll
- Plant, Soil and Ecosystem Processes Research Group, Department of Ecology, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - M Schloter
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Soil Science, Technical University of Munich, 85354 Freising, Germany
| | - S Schulz
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - C Duffner
- Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
- Chair of Soil Science, Technical University of Munich, 85354 Freising, Germany
| | - K Li
- Department of Materials, Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - K L Moore
- Department of Materials, Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - J Ingrisch
- Plant, Soil and Ecosystem Processes Research Group, Department of Ecology, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - D Reinthaler
- Plant, Soil and Ecosystem Processes Research Group, Department of Ecology, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - S Zechmeister-Boltenstern
- Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Peter-Jordan-Straße 82, 1190 Vienna, Austria
| | - S Glatzel
- Geoecology, Department of Geography and Regional Research, Faculty of Geosciences, Geography, and Astronomy, University of Vienna, Althanstraße 14, 1090 Vienna, Austria
| | - N Brüggemann
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Wilhelm-Johnen-Straße, 52425 Jülich, Germany
| | - M Bahn
- Plant, Soil and Ecosystem Processes Research Group, Department of Ecology, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| |
Collapse
|
4
|
Yu L, Harris E, Lewicka-Szczebak D, Barthel M, Blomberg MRA, Harris SJ, Johnson MS, Lehmann MF, Liisberg J, Müller C, Ostrom NE, Six J, Toyoda S, Yoshida N, Mohn J. What can we learn from N 2 O isotope data? - Analytics, processes and modelling. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8858. [PMID: 32548934 DOI: 10.1002/rcm.8858] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 05/21/2023]
Abstract
The isotopic composition of nitrous oxide (N2 O) provides useful information for evaluating N2 O sources and budgets. Due to the co-occurrence of multiple N2 O transformation pathways, it is, however, challenging to use isotopic information to quantify the contribution of distinct processes across variable spatiotemporal scales. Here, we present an overview of recent progress in N2 O isotopic studies and provide suggestions for future research, mainly focusing on: analytical techniques; production and consumption processes; and interpretation and modelling approaches. Comparing isotope-ratio mass spectrometry (IRMS) with laser absorption spectroscopy (LAS), we conclude that IRMS is a precise technique for laboratory analysis of N2 O isotopes, while LAS is more suitable for in situ/inline studies and offers advantages for site-specific analyses. When reviewing the link between the N2 O isotopic composition and underlying mechanisms/processes, we find that, at the molecular scale, the specific enzymes and mechanisms involved determine isotopic fractionation effects. In contrast, at plot-to-global scales, mixing of N2 O derived from different processes and their isotopic variability must be considered. We also find that dual isotope plots are effective for semi-quantitative attribution of co-occurring N2 O production and reduction processes. More recently, process-based N2 O isotopic models have been developed for natural abundance and 15 N-tracing studies, and have been shown to be effective, particularly for data with adequate temporal resolution. Despite the significant progress made over the last decade, there is still great need and potential for future work, including development of analytical techniques, reference materials and inter-laboratory comparisons, further exploration of N2 O formation and destruction mechanisms, more observations across scales, and design and validation of interpretation and modelling approaches. Synthesizing all these efforts, we are confident that the N2 O isotope community will continue to advance our understanding of N2 O transformation processes in all spheres of the Earth, and in turn to gain improved constraints on regional and global budgets.
Collapse
Affiliation(s)
- Longfei Yu
- Laboratory for Air Pollution & Environmental Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
- Institute of Groundwater and Earth Sciences, Jinan University, Guangzhou, 510632, China
| | - Eliza Harris
- Department of Ecology, University of Innsbruck, Sternwartestrasse 15, Innsbruck, A-6020, Austria
| | - Dominika Lewicka-Szczebak
- Centre for Stable Isotope Research and Analysis (KOSI), Büsgen Institute, Georg-August University of Göttingen, Germany
| | - Matti Barthel
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, SE-10691, Sweden
| | - Stephen J Harris
- School of Biological, Earth and Environmental Sciences, UNSW, Sydney, NSW, Australia
- Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW, Australia
| | - Matthew S Johnson
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen Ø, DK-2100, Denmark
| | - Moritz F Lehmann
- Department of Environmental Science, University of Basel, Basel, Switzerland
| | - Jesper Liisberg
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Christoph Müller
- Institute of Plant Ecology (IFZ), Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, Giessen, 35392, Germany
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nathaniel E Ostrom
- Department of Integrative Biology and DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Johan Six
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Sakae Toyoda
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, 226-8502, Japan
| | - Naohiro Yoshida
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, 226-8502, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, 152-8550, Japan
| | - Joachim Mohn
- Laboratory for Air Pollution & Environmental Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf, CH-8600, Switzerland
| |
Collapse
|
5
|
Kits KD, Jung MY, Vierheilig J, Pjevac P, Sedlacek CJ, Liu S, Herbold C, Stein LY, Richter A, Wissel H, Brüggemann N, Wagner M, Daims H. Low yield and abiotic origin of N 2O formed by the complete nitrifier Nitrospira inopinata. Nat Commun 2019; 10:1836. [PMID: 31015413 PMCID: PMC6478695 DOI: 10.1038/s41467-019-09790-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 03/27/2019] [Indexed: 12/11/2022] Open
Abstract
Nitrous oxide (N2O) and nitric oxide (NO) are atmospheric trace gases that contribute to climate change and affect stratospheric and ground-level ozone concentrations. Ammonia oxidizing bacteria (AOB) and archaea (AOA) are key players in the nitrogen cycle and major producers of N2O and NO globally. However, nothing is known about N2O and NO production by the recently discovered and widely distributed complete ammonia oxidizers (comammox). Here, we show that the comammox bacterium Nitrospira inopinata is sensitive to inhibition by an NO scavenger, cannot denitrify to N2O, and emits N2O at levels that are comparable to AOA but much lower than AOB. Furthermore, we demonstrate that N2O formed by N. inopinata formed under varying oxygen regimes originates from abiotic conversion of hydroxylamine. Our findings indicate that comammox microbes may produce less N2O during nitrification than AOB.
Collapse
Affiliation(s)
- K Dimitri Kits
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Man-Young Jung
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Julia Vierheilig
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Division of Water Quality and Health, Krems, 3500, Austria
- Interuniversity Cooperation Centre for Water and Health, Krems, 3500, Austria
| | - Petra Pjevac
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Christopher J Sedlacek
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Shurong Liu
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- The Comammox Research Platform, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Craig Herbold
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, CW405 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada
| | - Andreas Richter
- The Comammox Research Platform, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Holger Wissel
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Nicolas Brüggemann
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
- The Comammox Research Platform, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | - Holger Daims
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- The Comammox Research Platform, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| |
Collapse
|
6
|
Reichel R, Wei J, Islam MS, Schmid C, Wissel H, Schröder P, Schloter M, Brüggemann N. Potential of Wheat Straw, Spruce Sawdust, and Lignin as High Organic Carbon Soil Amendments to Improve Agricultural Nitrogen Retention Capacity: An Incubation Study. FRONTIERS IN PLANT SCIENCE 2018; 9:900. [PMID: 30002668 PMCID: PMC6031754 DOI: 10.3389/fpls.2018.00900] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/07/2018] [Indexed: 05/24/2023]
Abstract
Plants like winter wheat are known for their insufficient N uptake between sowing and the following growing season. Especially after N-rich crops like oilseed rape or field bean, nitrogen retention of the available soil N can be poor, and the risk of contamination of the hydrosphere with nitrate (NO3-) and the atmosphere with nitrous oxide (N2O) is high. Therefore, novel strategies are needed to preserve these unused N resources for subsequent agricultural production. High organic carbon soil amendments (HCA) like wheat straw promote microbial N immobilization by stimulating microbes to take up N from soil. In order to test the suitability of different HCA for immobilization of excess N, we conducted a laboratory incubation experiment with soil columns, each containing 8 kg of sandy loam of an agricultural Ap horizon. We created a scenario with high soil mineral N content by adding 150 kg NH4+-N ha-1 to soil that received either wheat straw, spruce sawdust or lignin at a rate of 4.5 t C ha-1, or no HCA as control. Wheat straw turned out to be suitable for fast immobilization of excess N in the form of microbial biomass N (up to 42 kg N ha-1), followed by sawdust. However, under the experimental conditions this effect weakened over a few weeks, finally ranging between 8 and 15 kg N ha-1 immobilized in microbial biomass in the spruce sawdust and wheat straw treatment, respectively. Pure lignin did not stimulate microbial N immobilization. We also revealed that N immobilization by the remaining straw and sawdust HCA material in the soil had a greater importance for storage of excess N (on average 24 kg N ha-1) than microbial N immobilization over the 4 months. N fertilization and HCA influenced the abundance of ammonia oxidizing bacteria and archaea as the key players for nitrification, as well as the abundance of denitrifiers. Soil with spruce sawdust emitted more N2O compared to soil with wheat straw, which in relation released more CO2, resulting in a comparable overall global warming potential. However, this was counterbalanced by advantages like N immobilization and mitigation of potential NO3- losses.
Collapse
Affiliation(s)
- Rüdiger Reichel
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Jülich, Germany
| | - Jing Wei
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Jülich, Germany
| | - Muhammad S. Islam
- General and Theoretical Ecology, Institute of Ecology, University of Bremen, Bremen, Germany
| | - Christoph Schmid
- Research Unit Comparative Microbiome Analysis (COMI), Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH, Helmholtz Zentrum München, Munich, Germany
| | - Holger Wissel
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Jülich, Germany
| | - Peter Schröder
- Research Unit Comparative Microbiome Analysis (COMI), Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH, Helmholtz Zentrum München, Munich, Germany
| | - Michael Schloter
- Research Unit Comparative Microbiome Analysis (COMI), Deutsches Forschungszentrum für Gesundheit und Umwelt GmbH, Helmholtz Zentrum München, Munich, Germany
| | - Nicolas Brüggemann
- Forschungszentrum Jülich GmbH, Institute of Bio- and Geosciences, Agrosphere (IBG-3), Jülich, Germany
| |
Collapse
|