1
|
Kamiya Y, Otsuka S, Miura T, Yoshizawa M, Nakano A, Iwasaki M, Kobayashi Y, Shimizu M, Kitajima M, Shono F, Funatsu K, Yamazaki H. Physiologically Based Pharmacokinetic Models Predicting Renal and Hepatic Concentrations of Industrial Chemicals after Virtual Oral Doses in Rats. Chem Res Toxicol 2020; 33:1736-1751. [PMID: 32500706 DOI: 10.1021/acs.chemrestox.0c00009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recently developed high-throughput in vitro assays in combination with computational models could provide alternatives to animal testing. The purpose of the present study was to model the plasma, hepatic, and renal pharmacokinetics of approximately 150 structurally varied types of drugs, food components, and industrial chemicals after virtual external oral dosing in rats and to determine the relationship between the simulated internal concentrations in tissue/plasma and their lowest-observed-effect levels. The model parameters were based on rat plasma data from the literature and empirically determined pharmacokinetics measured after oral administrations to rats carried out to evaluate hepatotoxic or nephrotic potentials. To ensure that the analyzed substances exhibited a broad diversity of chemical structures, their structure-based location in the chemical space underwent projection onto a two-dimensional plane, as reported previously, using generative topographic mapping. A high-throughput in silico one-compartment model and a physiologically based pharmacokinetic (PBPK) model consisting of chemical receptor (gut), metabolizing (liver), central (main), and excreting (kidney) compartments were developed in parallel. For 159 disparate chemicals, the maximum plasma concentrations and the areas under the concentration-time curves obtained by one-compartment models and modified simple PBPK models were closely correlated. However, there were differences between the PBPK modeled and empirically obtained hepatic/renal concentrations and plasma maximal concentrations/areas under the concentration-time curves of the 159 chemicals. For a few compounds, the lowest-observed-effect levels were available for hepatotoxicity and nephrotoxicity in the Hazard Evaluation Support System Integrated Platform in Japan. The areas under the renal or hepatic concentration-time curves estimated using PBPK modeling were inversely associated with these lowest-observed-effect levels. Using PBPK forward dosimetry could provide the plasma/tissue concentrations of drugs and chemicals after oral dosing, thereby facilitating estimates of nephrotoxic or hepatotoxic potential as a part of the risk assessment.
Collapse
Affiliation(s)
- Yusuke Kamiya
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Shohei Otsuka
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Tomonori Miura
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Manae Yoshizawa
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Ayane Nakano
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Miyu Iwasaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Yui Kobayashi
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Makiko Shimizu
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| | - Masato Kitajima
- Fujitsu Kyusyu Systems, Higashi-hie, Hakata-ku, Fukuoka 812-0007, Japan
| | - Fumiaki Shono
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kimito Funatsu
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, 3-3165 Higashi-tamagawa Gakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
2
|
Kamiya Y, Otsuka S, Miura T, Takaku H, Yamada R, Nakazato M, Nakamura H, Mizuno S, Shono F, Funatsu K, Yamazaki H. Plasma and Hepatic Concentrations of Chemicals after Virtual Oral Administrations Extrapolated Using Rat Plasma Data and Simple Physiologically Based Pharmacokinetic Models. Chem Res Toxicol 2018; 32:211-218. [PMID: 30511563 DOI: 10.1021/acs.chemrestox.8b00307] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Only a small fraction of chemicals possesses adequate in vivo toxicokinetic data for assessing potential hazards. The aim of the present study was to model the plasma and hepatic pharmacokinetics of more than 50 disparate types of chemicals and drugs after virtual oral administrations in rats. The models were based on reported pharmacokinetics determined after oral administration to rats. An inverse relationship was observed between no-observed-effect levels after oral administration and chemical absorbance rates evaluated for cell permeability ( r = -0.98, p < 0.001, n = 17). For a varied selection of more than 30 chemicals, the plasma concentration curves and the maximum concentrations obtained using a simple one-compartment model (recently recommended as a high-throughput toxicokinetic model) and a simple physiologically based pharmacokinetic (PBPK) model (consisting of chemical receptor, metabolizing, and central compartments) were highly consistent. The hepatic and plasma concentrations and the hepatic and plasma areas under the concentration-time curves of more than 50 chemicals were roughly correlated; however, differences were evident between the PBPK-modeled values in livers and empirically obtained values in plasma. Of the compounds selected for analysis, only seven had the lowest observed effect level (LOEL) values for hepatoxicity listed in the Hazard Evaluation Support System Integrated Platform in Japan. For these seven compounds, the LOEL values and the areas under the hepatic concentration-time curves estimated using PBPK modeling were inversely correlated ( r = -0.78, p < 0.05, n = 7). This study provides important information to help simulate the high hepatic levels of potent hepatotoxic compounds. Using suitable PBPK parameters, the present models could estimate the plasma/hepatic concentrations of chemicals and drugs after oral doses using both PBPK forward and reverse dosimetry, thereby indicating the potential value of this modeling approach in predicting hepatic toxicity as a part of risk assessments of chemicals absorbed in the human body.
Collapse
Affiliation(s)
- Yusuke Kamiya
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen , Machida, Tokyo 194-8543 , Japan
| | - Shohei Otsuka
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen , Machida, Tokyo 194-8543 , Japan
| | - Tomonori Miura
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen , Machida, Tokyo 194-8543 , Japan
| | - Hiroka Takaku
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen , Machida, Tokyo 194-8543 , Japan
| | - Rio Yamada
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen , Machida, Tokyo 194-8543 , Japan
| | - Mayuko Nakazato
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen , Machida, Tokyo 194-8543 , Japan
| | - Hitomi Nakamura
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen , Machida, Tokyo 194-8543 , Japan
| | - Sawa Mizuno
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen , Machida, Tokyo 194-8543 , Japan
| | - Fumiaki Shono
- Department of Chemical System Engineering, School of Engineering , The University of Tokyo , Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Kimito Funatsu
- Department of Chemical System Engineering, School of Engineering , The University of Tokyo , Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , 3-3165 Higashi-tamagawa Gakuen , Machida, Tokyo 194-8543 , Japan
| |
Collapse
|
3
|
Kwan MW, Weisenseel JP, Giel N, Bosak A, Batich CD, Willenberg BJ. Detection and quantification of trace airborne transfluthrin concentrations via air sampling and thermal desorption gas chromatography-mass spectrometry. J Chromatogr A 2018; 1573:156-160. [DOI: 10.1016/j.chroma.2018.08.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/01/2022]
|