1
|
Jiang N, Li W, Jiang S, Xie M, Liu R. Acetylation in pathogenesis: Revealing emerging mechanisms and therapeutic prospects. Biomed Pharmacother 2023; 167:115519. [PMID: 37729729 DOI: 10.1016/j.biopha.2023.115519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023] Open
Abstract
Protein acetylation modifications play a central and pivotal role in a myriad of biological processes, spanning cellular metabolism, proliferation, differentiation, apoptosis, and beyond, by effectively reshaping protein structure and function. The metabolic state of cells is intricately connected to epigenetic modifications, which in turn influence chromatin status and gene expression patterns. Notably, pathological alterations in protein acetylation modifications are frequently observed in diseases such as metabolic syndrome, cardiovascular disorders, and cancer. Such abnormalities can result in altered protein properties and loss of function, which are closely associated with developing and progressing related diseases. In recent years, the advancement of precision medicine has highlighted the potential value of protein acetylation in disease diagnosis, treatment, and prevention. This review includes provocative and thought-provoking papers outlining recent breakthroughs in acetylation modifications as they relate to cardiovascular disease, mitochondrial metabolic regulation, liver health, neurological health, obesity, diabetes, and cancer. Additionally, it covers the molecular mechanisms and research challenges in understanding the role of acetylation in disease regulation. By summarizing novel targets and prognostic markers for the treatment of related diseases, we aim to contribute to the field. Furthermore, we discuss current hot topics in acetylation research related to health regulation, including N4-acetylcytidine and liquid-liquid phase separation. The primary objective of this review is to provide insights into the functional diversity and underlying mechanisms by which acetylation regulates proteins in disease contexts.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Wenyong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Shuanglin Jiang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, China
| | - Ming Xie
- North China Petroleum Bureau General Hospital, Renqiu 062550, China.
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
2
|
Zhang Y, Wei J, Li L, Liu Y, Sun S, Xu L, Liu S, Wang Z, Yang L. Rapid identification of bear bile powder from other bile sources using chip-based nano-electrospray ionization tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9326. [PMID: 35582902 DOI: 10.1002/rcm.9326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Bear bile powder (BBP) is a widely used traditional Chinese medicine (TCM), and bile acids (BAs) are the main active components in BBP. Due to the scarcity of BBP resources, adulterations often occur in the market. Conventional methods to distinguish them are usually complicated and time-consuming. To enhance effectiveness and accuracy, a rapid and rough analytical method is desperately needed. METHODS In this study, a rapid strategy using chip-based nano-electrospray ionization tandem mass spectrometry (nano-ESI-MS/MS) was established to distinguish BBP from other sources of bile powder (BP). In addition, the results were further verified by ultra-high-performance liquid chromatography combined with high-resolution mass spectrometry (UPLC/MS). RESULTS The precision of the chip-based nano-ESI-MS/MS method was validated to be acceptable with relative standard deviation (RSD) <15%. The distinction between BBP and other sources of BP, including common adulterants of pig bile powder (PBP), cattle bile powder (CBP), sheep bile powder (SBP), and chicken bile powder (CkBP), can be observed in the spectra. By using orthogonal partial least-squares discriminant analysis (OPLS-DA), more potential m/z markers were investigated. A BAs-related m/z marker of 498.3 was discovered as a typical differential molecular ion peak and was identified as tauroursodeoxycholic acid (TUDCA) and taurochenodeoxycholic acid (TCDCA) in BBP. CONCLUSIONS The proposed strategy has simple sample pretreatment steps and significantly shortened analysis time. As an emerging technology, chip-based nano-ESI-MS not only provides a reference for the rapid distinction of adulterated Chinese medicines, but also provides some insights into the identification of other chemicals and foods.
Collapse
Affiliation(s)
- Yixin Zhang
- The MOE Key Laboratory of Standardization of Chinese Medicines and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaojiao Wei
- The MOE Key Laboratory of Standardization of Chinese Medicines and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linnan Li
- The MOE Key Laboratory of Standardization of Chinese Medicines and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yamin Liu
- The MOE Key Laboratory of Standardization of Chinese Medicines and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuai Sun
- The MOE Key Laboratory of Standardization of Chinese Medicines and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Xu
- Shanghai Kaibao Pharmaceutical Co., Ltd, Shanghai, China
| | - Shaoyong Liu
- Shanghai Kaibao Pharmaceutical Co., Ltd, Shanghai, China
| | - Zhengtao Wang
- The MOE Key Laboratory of Standardization of Chinese Medicines and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Yang
- The MOE Key Laboratory of Standardization of Chinese Medicines and the SATCM Key Laboratory of New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Hoy AJ, Nagarajan SR, Butler LM. Tumour fatty acid metabolism in the context of therapy resistance and obesity. Nat Rev Cancer 2021; 21:753-766. [PMID: 34417571 DOI: 10.1038/s41568-021-00388-4] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
Fatty acid metabolism is known to support tumorigenesis and disease progression as well as treatment resistance through enhanced lipid synthesis, storage and catabolism. More recently, the role of membrane fatty acid composition, for example, ratios of saturated, monounsaturated and polyunsaturated fatty acids, in promoting cell survival while limiting lipotoxicity and ferroptosis has been increasingly appreciated. Alongside these insights, it has become clear that tumour cells exhibit plasticity with respect to fatty acid metabolism, responding to extratumoural and systemic metabolic signals, such as obesity and cancer therapeutics, to promote the development of aggressive, treatment-resistant disease. Here, we describe cellular fatty acid metabolic changes that are connected to therapy resistance and contextualize obesity-associated changes in host fatty acid metabolism that likely influence the local tumour microenvironment to further modify cancer cell behaviour while simultaneously creating potential new vulnerabilities.
Collapse
Affiliation(s)
- Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia.
| | - Shilpa R Nagarajan
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom
| | - Lisa M Butler
- Adelaide Medical School and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Wang T, Liu X, Qu X, Li Y, Liang X, Wu J. Lipid response of hepatocellular carcinoma cells to anticancer drug detected on nanostructure-assisted LDI-MS platform. Talanta 2021; 235:122817. [PMID: 34517673 DOI: 10.1016/j.talanta.2021.122817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/25/2022]
Abstract
High heterogeneity of hepatocellular carcinoma (HCC) tumor has become an obstacle to select effective therapy for the treatment of HCC patients. Methods that can guide the decision on therapy choice for HCC treatment are highly demanded. Evaluating the drug response of heterogeneous tumor cells at the molecular level can help to reveal the toxicity mechanism of anticancer drugs and provide more information than current cell-based chemosensitivity assays. In the present work, nanostructure-assisted laser desorption/ionization mass spectrometry (NALDI-MS) was used to investigate the lipid response of HCC cells to anticancer drugs. Three types of HCC cells (LM3, Hep G2, Huh7) were treated with sorafenib, doxorubicin hydro-chloride, and cisplatin. We found that the lipid profiles of HCC cells changed a lot after the drug treatment, and the degree of lipid changes was related to the cell viability. Two pairs of fatty acids C16:1/C16:0 and C18:1/C18:0 were found to be strongly related to the viability of HCC cells after drug treatment, and were more sensitive than Methyl-thiazolyl tetrazolium (MTT) assay. Accordingly, they can act as sensitive and comprehensive indexes to evaluate the drug susceptibility of HCC cells. In addition, the peak ratio of several neighboring phospholipids displayed high correlation with drug response of specific cell subtype to specific drug. The ratio of neighboring lipids may be traced back to the activity of enzyme and gene expression which regulate the lipidomic pathway. This method provides drug response of heterogenous tumor cells at molecular level and could be a potential candidate to precise tumor chemosensitivity assay.
Collapse
Affiliation(s)
- Tao Wang
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xingyue Liu
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xuetong Qu
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Yuexin Li
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Liang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
| | - Jianmin Wu
- Institution of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
|
6
|
Domenick TM, Gill EL, Vedam-Mai V, Yost RA. Mass Spectrometry-Based Cellular Metabolomics: Current Approaches, Applications, and Future Directions. Anal Chem 2020; 93:546-566. [PMID: 33146525 DOI: 10.1021/acs.analchem.0c04363] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Taylor M Domenick
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Emily L Gill
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4283, United States.,Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-4283, United States
| | - Vinata Vedam-Mai
- Department of Neurology, University of Florida, Gainesville, Florida 32610, United States
| | - Richard A Yost
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
7
|
Knodel A, Foest D, Brandt S, Ahlmann N, Marggraf U, Gilbert-López B, Franzke J. Detection and Evaluation of Lipid Classes and Other Hydrophobic Compounds Using a Laser Desorption/Plasma Ionization Interface. Anal Chem 2020; 92:15212-15220. [DOI: 10.1021/acs.analchem.0c03839] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alexander Knodel
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Daniel Foest
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Sebastian Brandt
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Norman Ahlmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Ulrich Marggraf
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Bienvenida Gilbert-López
- Analytical Chemistry Research Group (FQM-323), Department of Physical and Analytical Chemistry, University of Jaén, Campus Las Lagunillas, Edif. B-3, 23071 Jaén, Spain
| | - Joachim Franzke
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| |
Collapse
|
8
|
Deng J, Yang Y, Luo L, Xiao Y, Luan T. Lipid analysis and lipidomics investigation by ambient mass spectrometry. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115924] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Hale OJ, Cooper HJ. In situ mass spectrometry analysis of intact proteins and protein complexes from biological substrates. Biochem Soc Trans 2020; 48:317-326. [PMID: 32010951 PMCID: PMC7054757 DOI: 10.1042/bst20190793] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/09/2020] [Accepted: 01/09/2020] [Indexed: 12/15/2022]
Abstract
Advances in sample preparation, ion sources and mass spectrometer technology have enabled the detection and characterisation of intact proteins. The challenges associated include an appropriately soft ionisation event, efficient transmission and detection of the often delicate macromolecules. Ambient ion sources, in particular, offer a wealth of strategies for analysis of proteins from solution environments, and directly from biological substrates. The last two decades have seen rapid development in this area. Innovations include liquid extraction surface analysis, desorption electrospray ionisation and nanospray desorption electrospray ionisation. Similarly, developments in native mass spectrometry allow protein-protein and protein-ligand complexes to be ionised and analysed. Identification and characterisation of these large ions involves a suite of hyphenated mass spectrometry techniques, often including the coupling of ion mobility spectrometry and fragmentation techniques. The latter include collision, electron and photon-induced methods, each with their own characteristics and benefits for intact protein identification. In this review, recent developments for in situ protein analysis are explored, with a focus on ion sources and tandem mass spectrometry techniques used for identification.
Collapse
Affiliation(s)
- Oliver J. Hale
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, U.K
| | - Helen J. Cooper
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, U.K
| |
Collapse
|
10
|
González-Riano C, Dudzik D, Garcia A, Gil-de-la-Fuente A, Gradillas A, Godzien J, López-Gonzálvez Á, Rey-Stolle F, Rojo D, Ruperez FJ, Saiz J, Barbas C. Recent Developments along the Analytical Process for Metabolomics Workflows. Anal Chem 2019; 92:203-226. [PMID: 31625723 DOI: 10.1021/acs.analchem.9b04553] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Carolina González-Riano
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Danuta Dudzik
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain.,Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy , Medical University of Gdańsk , 80-210 Gdańsk , Poland
| | - Antonia Garcia
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Alberto Gil-de-la-Fuente
- Department of Information Technology, Escuela Politécnica Superior , Universidad San Pablo-CEU , 28003 Madrid , Spain
| | - Ana Gradillas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Joanna Godzien
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain.,Clinical Research Centre , Medical University of Bialystok , 15-089 Bialystok , Poland
| | - Ángeles López-Gonzálvez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Fernanda Rey-Stolle
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - David Rojo
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Francisco J Ruperez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Jorge Saiz
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Chemistry and Biochemistry Department, Pharmacy Faculty , Universidad San Pablo-CEU , Boadilla del Monte , 28668 Madrid , Spain
| |
Collapse
|
11
|
Chen Z, Li Z, Li H, Jiang Y. Metabolomics: a promising diagnostic and therapeutic implement for breast cancer. Onco Targets Ther 2019; 12:6797-6811. [PMID: 31686838 PMCID: PMC6709037 DOI: 10.2147/ott.s215628] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer among women and the leading cause of cancer death. Despite the advent of numerous diagnosis and treatment methods in recent years, this heterogeneous disease still presents great challenges in early diagnosis, curative treatments and prognosis monitoring. Thus, finding promising early diagnostic biomarkers and therapeutic targets and approaches is meaningful. Metabolomics, which focuses on the analysis of metabolites that change during metabolism, can reveal even a subtle abnormal change in an individual. In recent decades, the exploration of cancer-related metabolomics has increased. Metabolites can be promising biomarkers for the screening, response evaluation and prognosis of BC. In this review, we summarized the workflow of metabolomics, described metabolite signatures based on molecular subtype as well as reclassification and then discussed the application of metabolomics in the early diagnosis, monitoring and prognosis of BC to offer new insights for clinicians in breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Zhanghan Chen
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Zehuan Li
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Haoran Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | - Ying Jiang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, People's Republic of China
| |
Collapse
|