1
|
Shin D, Lee J, Kim Y, Park J, Shin D, Song Y, Joo EJ, Roh S, Lee KY, Oh S, Ahn YM, Rhee SJ, Kim Y. Evaluation of a Nondepleted Plasma Multiprotein-Based Model for Discriminating Psychiatric Disorders Using Multiple Reaction Monitoring-Mass Spectrometry: Proof-of-Concept Study. J Proteome Res 2024; 23:329-343. [PMID: 38063806 DOI: 10.1021/acs.jproteome.3c00580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Psychiatric evaluation relies on subjective symptoms and behavioral observation, which sometimes leads to misdiagnosis. Despite previous efforts to utilize plasma proteins as objective markers, the depletion method is time-consuming. Therefore, this study aimed to enhance previous quantification methods and construct objective discriminative models for major psychiatric disorders using nondepleted plasma. Multiple reaction monitoring-mass spectrometry (MRM-MS) assays for quantifying 453 peptides in nondepleted plasma from 132 individuals [35 major depressive disorder (MDD), 47 bipolar disorder (BD), 23 schizophrenia (SCZ) patients, and 27 healthy controls (HC)] were developed. Pairwise discriminative models for MDD, BD, and SCZ, and a discriminative model between patients and HC were constructed by machine learning approaches. In addition, the proteins from nondepleted plasma-based discriminative models were compared with previously developed depleted plasma-based discriminative models. Discriminative models for MDD versus BD, BD versus SCZ, MDD versus SCZ, and patients versus HC were constructed with 11 to 13 proteins and showed reasonable performances (AUROC = 0.890-0.955). Most of the shared proteins between nondepleted and depleted plasma models had consistent directions of expression levels and were associated with neural signaling, inflammatory, and lipid metabolism pathways. These results suggest that multiprotein markers from nondepleted plasma have a potential role in psychiatric evaluation.
Collapse
Affiliation(s)
- Dongyoon Shin
- Proteomics Research Team, CHA Institute of Future Medicine, Seongnam 13520, Republic of Korea
| | - Jihyeon Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Yeongshin Kim
- Department of Life Science, General Graduate School, CHA University, Seongnam 13488, Republic of Korea
| | - Junho Park
- Proteomics Research Team, CHA Institute of Future Medicine, Seongnam 13520, Republic of Korea
- Department of Life Science, General Graduate School, CHA University, Seongnam 13488, Republic of Korea
| | - Daun Shin
- Department of Psychiatry, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Yoojin Song
- Department of Psychiatry, Kangwon National University Hospital, Chuncheon 24289, Republic of Korea
| | - Eun-Jeong Joo
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
- Department of Psychiatry, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu 11759, Republic of Korea
| | - Sungwon Roh
- Department of Psychiatry, Hanyang University Hospital and Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Kyu Young Lee
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
- Department of Psychiatry, Nowon Eulji University Hospital, Seoul 01830, Republic of Korea
| | - Sanghoon Oh
- Department of Neuropsychiatry, School of Medicine, Eulji University, Daejeon 34824, Republic of Korea
- Department of Psychiatry, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu 11759, Republic of Korea
| | - Yong Min Ahn
- Department of Psychiatry, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Institute of Human Behavioral Medicine, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Sang Jin Rhee
- Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Youngsoo Kim
- Proteomics Research Team, CHA Institute of Future Medicine, Seongnam 13520, Republic of Korea
- Department of Life Science, General Graduate School, CHA University, Seongnam 13488, Republic of Korea
| |
Collapse
|
2
|
Shao W, Sun Y, Su H, Sun Q, Lin Z. 4-Mercaptobenzoic acid-assisted laser desorption/ionization mass spectrometry for sensitive quantification of cesium and strontium in drinking water. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2022; 36:e9342. [PMID: 35729806 DOI: 10.1002/rcm.9342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Cesium ions (Cs+ ) and strontium ions (Sr2+ ), which enter the human body mainly through drinking water, are an important determinant of health. They are widely distributed on Earth and extremely soluble in water. In order to assist assessment of the drinking safety, it was essential to develop a rapid analytical method for quantification. We have established a 4-mercaptobenzoic acid (MBA)-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) method for the rapid detection and sensitive quantification of Cs+ and Sr2+ in the aqueous environment. METHODS Using MBA as the matrix, the rapid detection and quantification for Cs+ and Sr2+ were conducted by MALDI-TOF-MS. At first, the concentration of MBA was optimized. Then, salt tolerance, detection limit and reproducibility of this method were evaluated by standard solutions. Finally, the calibration curves were constructed and applied to the rapid determination of Cs+ and Sr2+ in six commercially available bottled waters for drinking. RESULTS For the MBA-assisted MALDI-TOF-MS method, the optimal concentration of MBA was 2 mg/mL. The signal-to-noise (S/N) ratio of Cs+ was up to 971 in 1000 mmol/mL NaCl solution. The detection limits of the method for Cs+ and Sr2+ were 3 pg/mL and 10 pg/mL, respectively. Furthermore, this developed method was applied to the rapid analysis of Cs+ and Sr2+ in six commercially available drinking waters, and the results correlated well with the results obtained from a validated inductively coupled plasma mass spectrometry (ICP-MS) method. CONCLUSIONS The MBA-assisted MALDI-TOF-MS method has high sensitivity, fast detection speed, less background interference, and high reproducibility in the analysis of Cs+ and Sr2+ . Because of the physiological functions and general toxic effects, detection of Cs+ and Sr2+ in water is of major importance for drinking safety.
Collapse
Affiliation(s)
- Wenya Shao
- Ministry of Education Key Laboratory of Analysis Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Ying Sun
- Ministry of Education Key Laboratory of Analysis Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Hang Su
- Ministry of Education Key Laboratory of Analysis Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Qianqian Sun
- Ministry of Education Key Laboratory of Analysis Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analysis Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Rodrigues JE, Martinho A, Santos V, Santa C, Madeira N, Martins MJ, Pato CN, Macedo A, Manadas B. Systematic Review and Meta-Analysis on MS-Based Proteomics Applied to Human Peripheral Fluids to Assess Potential Biomarkers of Bipolar Disorder. Int J Mol Sci 2022; 23:5460. [PMID: 35628270 PMCID: PMC9141521 DOI: 10.3390/ijms23105460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
Bipolar disorder (BD) is a clinically heterogeneous condition, presenting a complex underlying etiopathogenesis that is not sufficiently characterized. Without molecular biomarkers being used in the clinical environment, several large screen proteomics studies have been conducted to provide valuable molecular information. Mass spectrometry (MS)-based techniques can be a powerful tool for the identification of disease biomarkers, improving prediction and diagnosis ability. Here, we evaluate the efficacy of MS proteomics applied to human peripheral fluids to assess BD biomarkers and identify relevant networks of biological pathways. Following PRISMA guidelines, we searched for studies using MS proteomics to identify proteomic differences between BD patients and healthy controls (PROSPERO database: CRD42021264955). Fourteen articles fulfilled the inclusion criteria, allowing the identification of 266 differentially expressed proteins. Gene ontology analysis identified complement and coagulation cascades, lipid and cholesterol metabolism, and focal adhesion as the main enriched biological pathways. A meta-analysis was performed for apolipoproteins (A-I, C-III, and E); however, no significant differences were found. Although the proven ability of MS proteomics to characterize BD, there are several confounding factors contributing to the heterogeneity of the findings. In the future, we encourage the scientific community to use broader samples and validation cohorts, integrating omics with bioinformatics tools towards providing a comprehensive understanding of proteome alterations, seeking biomarkers of BD, and contributing to individualized prognosis and stratification strategies, besides aiding in the differential diagnosis.
Collapse
Affiliation(s)
- Joao E. Rodrigues
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Ana Martinho
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Vítor Santos
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal;
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Catia Santa
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal;
| | - Nuno Madeira
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria J. Martins
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal;
- Medical Services, University of Coimbra Medical Services, 3004-517 Coimbra, Portugal
| | - Carlos N. Pato
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| | - Antonio Macedo
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Bruno Manadas
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal;
- III Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| |
Collapse
|
4
|
Rahnama M, Mohammadian A, Aarabi S. Network Module analysis of bipolar disorder mechanism deciphers underlying pathways. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.100975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
5
|
Rodrigues JE, Martinho A, Santa C, Madeira N, Coroa M, Santos V, Martins MJ, Pato CN, Macedo A, Manadas B. Systematic Review and Meta-Analysis of Mass Spectrometry Proteomics Applied to Human Peripheral Fluids to Assess Potential Biomarkers of Schizophrenia. Int J Mol Sci 2022; 23:ijms23094917. [PMID: 35563307 PMCID: PMC9105255 DOI: 10.3390/ijms23094917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Mass spectrometry (MS)-based techniques can be a powerful tool to identify neuropsychiatric disorder biomarkers, improving prediction and diagnosis ability. Here, we evaluate the efficacy of MS proteomics applied to human peripheral fluids of schizophrenia (SCZ) patients to identify disease biomarkers and relevant networks of biological pathways. Following PRISMA guidelines, a search was performed for studies that used MS proteomics approaches to identify proteomic differences between SCZ patients and healthy control groups (PROSPERO database: CRD42021274183). Nineteen articles fulfilled the inclusion criteria, allowing the identification of 217 differentially expressed proteins. Gene ontology analysis identified lipid metabolism, complement and coagulation cascades, and immune response as the main enriched biological pathways. Meta-analysis results suggest the upregulation of FCN3 and downregulation of APO1, APOA2, APOC1, and APOC3 in SCZ patients. Despite the proven ability of MS proteomics to characterize SCZ, several confounding factors contribute to the heterogeneity of the findings. In the future, we encourage the scientific community to perform studies with more extensive sampling and validation cohorts, integrating omics with bioinformatics tools to provide additional comprehension of differentially expressed proteins. The produced information could harbor potential proteomic biomarkers of SCZ, contributing to individualized prognosis and stratification strategies, besides aiding in the differential diagnosis.
Collapse
Affiliation(s)
- João E. Rodrigues
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (V.S.)
| | - Ana Martinho
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (V.S.)
| | - Catia Santa
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (V.S.)
| | - Nuno Madeira
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Manuel Coroa
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (V.S.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Vítor Santos
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (V.S.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| | - Maria J. Martins
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (V.S.)
- Medical Services, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Carlos N. Pato
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| | - Antonio Macedo
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Psychiatry Department, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3000-548 Coimbra, Portugal
- Correspondence: (A.M.); (B.M.)
| | - Bruno Manadas
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (J.E.R.); (A.M.); (C.S.); (M.J.M.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.C.); (V.S.)
- III Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
- Correspondence: (A.M.); (B.M.)
| |
Collapse
|
6
|
de Jesus JR, Arruda MAZ. Unravelling neurological disorders through metallomics-based approaches. Metallomics 2020; 12:1878-1896. [PMID: 33237082 DOI: 10.1039/d0mt00234h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Understanding the biological process involving metals and biomolecules in the brain is essential for establishing the origin of neurological disorders, such as neurodegenerative and psychiatric diseases. From this perspective, this critical review presents recent advances in this topic, showing possible mechanisms involving the disruption of metal homeostasis and the pathogenesis of neurological disorders. We also discuss the main challenges observed in metallomics studies associated with neurological disorders, including those related to sample preparation and analyte quantification.
Collapse
|
7
|
de Jesus JR, de Araújo Andrade T. Understanding the relationship between viral infections and trace elements from a metallomics perspective: implications for COVID-19. Metallomics 2020; 12:1912-1930. [PMID: 33295922 PMCID: PMC7928718 DOI: 10.1039/d0mt00220h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022]
Abstract
Recently, the World Health Organization (WHO) declared a pandemic situation due to a new viral infection (COVID-19) caused by a novel virus (Sars-CoV-2). COVID-19 is today the leading cause of death from viral infections in the world. It is known that many elements play important roles in viral infections, both in virus survival, and in the activation of the host's immune system, which depends on the presence of micronutrients to maintain the integrity of its functions. In this sense, the metallome can be an important object of study for understanding viral infections. Therefore, this work presents an overview of the role of trace elements in the immune system and the state of the art in metallomics, highlighting the challenges found in studies focusing on viral infections.
Collapse
Affiliation(s)
- Jemmyson Romário de Jesus
- University of Campinas, Institute of Chemistry, Dept of Analytical Chemistry, Campinas, São Paulo, Brazil.
| | | |
Collapse
|