1
|
Konya Y, Ochiai R, Fujiwara S, Tsujino K, Okumura T. Detailed profiling of polysorbate 80 oxidative degradation products and hydrolysates using liquid chromatography-tandem mass spectrometry analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9715. [PMID: 38351644 DOI: 10.1002/rcm.9715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
RATIONALE Polysorbate 80 (PS80) is an amphipathic, nonionic surfactant that is commonly used to stabilize proteins in biopharmaceutical formulations. PS80 undergoes oxidative and/or enzymatic degradation. However, because PS80 is a complex mixture consisting of many constituents, comprehensive evaluations of its oxidative degradation products are difficult and insufficient. METHODS Our previously reported comprehensive liquid chromatography-tandem mass spectrometry (LC/MS/MS)-based method for PS80 effectively provides an overall profile of PS80 components under simple LC conditions. In this study, we attempted to shorten the analysis time. Furthermore, PS80 was oxidatively degraded in a solution containing histidine and iron, and the oxidative degradation products were evaluated using a modified LC/MS/MS method. In addition, enzymatically hydrolyzed PS80 samples were analyzed. RESULTS We succeeded in shortening the analysis time from 70 to 20 min while maintaining the resolution of the PS80 components of the same selected reaction monitoring transition. Both the previously reported oxidative degradation products and the newly discovered products were successfully detected, and their composition ratios and changes over time were observed. Changes in the hydrolysates over time are shown in the analysis of the hydrolyzed PS80 samples. CONCLUSIONS This study clearly showed the presence of changes in PS80 oxidative and/or enzymatic degradation products, including those previously unreported. These results demonstrate that a detailed profiling of PS80 degradation products can be performed using LC/MS/MS, which is less expensive and more generally adopted than high-resolution MS.
Collapse
Affiliation(s)
- Yutaka Konya
- Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, Inc., Kyoto, Japan
| | - Ryosuke Ochiai
- Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, Inc., Kyoto, Japan
| | - Satoshi Fujiwara
- Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, Inc., Kyoto, Japan
| | - Kazushige Tsujino
- Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, Inc., Kyoto, Japan
| | - Takeshi Okumura
- Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, Inc., Kyoto, Japan
| |
Collapse
|
2
|
Zegota MM, Schuster G, De Pra M, Müllner T, Menzen T, Steiner F, Hawe A. High throughput multidimensional liquid chromatography approach for online protein removal and characterization of polysorbates and poloxamer in monoclonal antibody formulations. J Chromatogr A 2024; 1720:464777. [PMID: 38432108 DOI: 10.1016/j.chroma.2024.464777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/14/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
The majority of commercially available monoclonal antibody (mAb) formulations are stabilized with one of three non-ionic surfactants: polysorbate 20 (PS20), polysorbate 80 (PS80), or poloxamer 188 (P188). All three surfactants are susceptible to degradation, which can result in functionality loss and subsequent protein aggregation or free fatty acid particle formation. Consequently, quantitative, and qualitative analysis of surfactants is an integral part of formulation development, stability, and batch release testing. Due to the heterogeneous nature of both polysorbates and poloxamer, online isolation of all the compounds from the protein and other excipients that may disturb the subsequent liquid chromatography with charged aerosol detection (LC-CAD) analysis poses a challenge. Herein, we present an analytical method employing LC-CAD, utilizing a combination of anion and cation exchange columns to completely remove proteins online before infusing the isolated surfactant onto a reversed-phase column. The method allows high throughput analysis of polysorbates within 8 minutes and poloxamer 188 within 12 minutes, providing a separation of the surfactant species of polysorbates (unesterified species, lower esters, and higher esters) and poloxamer 188 (early eluters and main species). Accuracy and precision assessed according to the International Council for harmonisation (ICH) guideline were 96 - 109 % and ≤1 % relative standard deviation respectively for all three surfactants in samples containing up to 110 mg/mL mAb. Subsequently, the method was effectively applied to quantify polysorbate 20 and polysorbate 80 in nine commercial drug products with mAb concentration of up to 180 mg/mL.
Collapse
Affiliation(s)
| | - Georg Schuster
- Coriolis Pharma Research, Fraunhoferstraße 18B, 82152 Martinsried, Germany
| | - Mauro De Pra
- Thermo Fisher Scientific, Dornierstraße 4, 82110 Germering, Germany
| | - Tibor Müllner
- Thermo Fisher Scientific, Dornierstraße 4, 82110 Germering, Germany
| | - Tim Menzen
- Coriolis Pharma Research, Fraunhoferstraße 18B, 82152 Martinsried, Germany
| | - Frank Steiner
- Thermo Fisher Scientific, Dornierstraße 4, 82110 Germering, Germany
| | - Andrea Hawe
- Coriolis Pharma Research, Fraunhoferstraße 18B, 82152 Martinsried, Germany
| |
Collapse
|
3
|
Koelmel JP, Stelben P, Oranzi N, Kummer M, Godri D, Qi J, Rennie EE, Lin E, Weil D, Godri Pollitt KJ. PolyMatch: Novel Libraries, Algorithms, and Visualizations for Discovering Polymers and Chemical Series. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:413-420. [PMID: 38301121 DOI: 10.1021/jasms.3c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Polymers are integral components of everyday products, ranging from plastics and emulsifiers to lubricants and detergents. Characterization of these materials at the molecular level is essential to understanding their physicochemical properties and potential health impacts, considering factors such as the number of repeating units, chemical moieties, functional groups, and degree of unsaturation. This study introduces a free open-source vendor neutral software, PolyMatch, designed to annotate polysorbates, polysorbides, polyethylene glycols (PEGs), fatty acid esterified species, and related chemical species based on mass spectral and chromatographic patterns inherent in the repeating nature of chemical moieties. PolyMatch facilitates the generation of MS/MS libraries for polymeric chemical species characterization (with over 800 000 structures with associated fragment masses already built in) and covers the entire liquid chromatography-high-resolution mass spectrometry (LC-HRMS/MS) data-processing workflow. PolyMatch covers peak picking, blank filtering, annotation, data visualization, and sharing of interactive data sets via an HTML link to the community. The software was applied to a Tween 80 mixture, using LC-HRMS/MS on an Agilent 6546 Q-TOF instrument with iterative exclusion for comprehensive fragmentation coverage. PolyMatch automatically assigned 86 features with high confidence at the species level, 362 based on PEG containing fragments and accurate mass matching to a simulated polymer database, and over 10 000 based on being a member of a homologous series (three or more) with CH2CH2O repeating units. The ease of use of PolyMatch and comprehensive coverage with species level assignment is expected to contribute to the advancement of materials science, health research, and product development.
Collapse
Affiliation(s)
- Jeremy P Koelmel
- School of Public Health, Yale University, New Haven, Connecticut 06520, United States
| | - Paul Stelben
- School of Public Health, Yale University, New Haven, Connecticut 06520, United States
| | - Nicholas Oranzi
- University of Florida, Gainesville, Florida 32611-7011, United States
| | - Michael Kummer
- Innovative Omics Inc., Sarasota, Florida 34235, United States
| | - David Godri
- 3rd Floor Solutions, Caledon, Ontario L7E 3C8, Canada
| | - Jiarong Qi
- School of Public Health, Yale University, New Haven, Connecticut 06520, United States
| | - Emma E Rennie
- Agilent Technologies Inc., Santa Clara, California 95051, United States
| | - Elizabeth Lin
- School of Public Health, Yale University, New Haven, Connecticut 06520, United States
| | - David Weil
- Agilent Technologies Inc., Santa Clara, California 95051, United States
| | | |
Collapse
|
4
|
De Pra M, Ispan DA, Meding S, Müllner T, Lovejoy KS, Grosse S, Cook K, Carillo S, Steiner F, Bones J. Degradation of polysorbate investigated by a high-performance liquid chromatography multi-detector system with charged aerosol and mass detection. J Chromatogr A 2023; 1710:464405. [PMID: 37769426 DOI: 10.1016/j.chroma.2023.464405] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023]
Abstract
Polysorbate 80 is widely used as a formulation component in biopharmaceutical drug products. Recent studies have shown that polysorbate 80 is readily degraded either through direct or indirect means. The degradation of polysorbate 80 causes a concern for the long-term stability of biopharmaceutical drug product, as the breakdown products of polysorbate 80 have been shown to cause adverse effects, such as formation of sub-visible and visible particles and mAb aggregation. Understanding the path and extent of degradation is of a paramount importance for the formulator during formulation development. A multi-detector HPLC system using charged aerosol and mass detection was developed and optimized for the characterization of polysorbate 80 standards. The system included a post-column make-up flow, i.e. an inverse gradient, that enabled constant eluent composition at the detectors. The inverse gradient eliminated the main source of variability for the charged aerosol detector response, thereby enabling the calculation of the mass balance between polysorbate components with different degrees of esterification. Extracted ion chromatograms of the mass detector combined with their respective retention times were used to qualitatively characterize the polysorbate samples down to the individual components. The system was applied to study the degradation of several polysorbate standards which occurred by enzymatic digestion or long-term storage. The system provided detailed information on the mechanism of degradation without the need for additional orthogonal analytical techniques.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ken Cook
- Thermo Fisher Scientific, Hemel Hempstead, UK
| | - Sara Carillo
- National Institute for Bioprocessing Research and Training, Foster Avenue, Blackrock, Co. Dublin, Mount Merrion A94×099, Ireland
| | | | - Jonathan Bones
- National Institute for Bioprocessing Research and Training, Foster Avenue, Blackrock, Co. Dublin, Mount Merrion A94×099, Ireland; School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, D04 V1W8, Ireland
| |
Collapse
|
5
|
Konya Y, Ochiai R, Fujiwara S, Tsujino K, Okumura T. Profiling polysorbate 80 components using comprehensive liquid chromatography-tandem mass spectrometry analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9438. [PMID: 36410723 DOI: 10.1002/rcm.9438] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
RATIONALE Polysorbate 80 (PS80) is an amphipathic, nonionic surfactant commonly used in pharmaceutical protein formulations and is composed of fatty acid (FA) esters of polyethoxylated sorbitan. However, commercial PS80 products contain substantial amounts of by-products. The development of simple and reliable methods for PS80 component analysis is challenging given the inherent heterogeneity. METHOD We developed a comprehensive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to profile the components of PS80. Semi-comprehensive LC-MS/MS analyses of 11 subspecies in three commercial PS80 products were performed to estimate the average degree of polymerization of the ethylene oxide units (Avg-n) in the molecules. Furthermore, three subspecies (polyoxyethylene sorbitan monoester, polyoxyethylene isosorbide monoester, and polyoxyethylene monoester) were analyzed to estimate the composition ratios of the seven ester-bonded FAs present in PS80. RESULTS The Avg-n values of five polyoxyethylene sorbitan esters (none, mono, di, tri, and tetra), three polyoxyethylene isosorbide esters (none, mono, and di), and three polyoxyethylene esters (none, mono, and di) were 26.5-30.6, 12.1-14.6, and 11.4-15.8, respectively. These values were comparable regardless of the number of ester-bonded FAs. Each product had a similar FA composition ratio regardless of the differences in the subspecies. However, the obtained C18:2 values were higher than those reported in the product certificates. CONCLUSION The proposed LC-MS/MS method evaluated the overall PS80 components, revealing the possibility of underestimation of ester-bonded linoleic acid using the conventional gas chromatography-mass spectrometry method. The similarity of Avg-n values and FA compositions among subspecies suggested the high reliability of these results, indicating that the presented approach may help in the quality control of PS80 formulations.
Collapse
Affiliation(s)
- Yutaka Konya
- Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, Inc., Kyoto, Japan
| | - Ryosuke Ochiai
- Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, Inc., Kyoto, Japan
| | - Satoshi Fujiwara
- Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, Inc., Kyoto, Japan
| | - Kazushige Tsujino
- Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, Inc., Kyoto, Japan
| | - Takeshi Okumura
- Pharmaceuticals and Life Sciences Division, Shimadzu Techno-Research, Inc., Kyoto, Japan
| |
Collapse
|
6
|
Mittag JJ, Trutschel ML, Kruschwitz H, Mäder K, Buske J, Garidel P. Characterization of radicals in polysorbate 80 using electron paramagnetic resonance (EPR) spectroscopy and spin trapping. Int J Pharm X 2022; 4:100123. [PMID: 35795322 PMCID: PMC9251573 DOI: 10.1016/j.ijpx.2022.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022] Open
Abstract
Polysorbates are an important class of nonionic surfactants that are widely used to stabilize biopharmaceuticals. The degradation of polysorbate 20 and 80 and the related particle formation in biologics are heavily discussed in the pharmaceutical community. Although a lot of experimental effort was spent in the detailed study of potential degradation pathways, the underlying mechanisms are only sparsely understood. Besides enzymatic hydrolysis, another proposed mechanism is associated with radical-induced (auto)oxidation of polysorbates. To characterize the types and the origin of the involved radicals and their propagation in bulk material as well as in diluted polysorbate 80 solutions, we applied electron paramagnetic resonance (EPR) spectroscopy using a spin trapping approach. The prerequisite for a meaningful experiment using spin traps is an understanding of the trapping rate, which is an interplay of (i) the presence of the spin trap at the scene of action, (ii) the specific reactivity of the selected spin trap with a certain radical as well as (iii) the stability of the formed spin adducts (a slow decay rate). We discuss whether and to which extent these criteria are fulfilled regarding the identification of different radical classes that might be involved in polysorbate oxidative degradation processes. The ratio of different radicals for different scenarios was determined for various polysorbate 80 quality grades in bulk material and in aqueous solution, showing differences in the ratio of present radicals. Possible correlations between the radical content and product parameters such as the quality grade, the manufacturing date, the manufacturer, the initial peroxide content according to the certificate of analysis of polysorbate 80 are discussed.
Collapse
Key Words
- 5,5-dimethyl-1-pyrroline-N-oxide, DMPO
- DMPO
- EPR
- Oxidation
- Peroxide
- Polysorbate
- Radical
- Spin trap
- alkoxyl radical, RO•
- alkyl radical, R•
- all-oleate, AO
- certificate of analysis, CoA
- china grade, CG
- electron paramagnetic resonance, EPR
- fatty acid, FA
- high purity, HP
- hydrogen peroxide, H2O2
- hydroperoxide, ROOH
- hydroxyl radical, HO•
- peroxyl radical, ROO•
- polyoxyethylene, POE
- polysorbate, PS
- reactive oxygen species, ROS
- super-refined, SR
- superoxide, O2•−
Collapse
Affiliation(s)
- Judith J. Mittag
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Marie-Luise Trutschel
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Helen Kruschwitz
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Karsten Mäder
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, Faculty of Biosciences, Wolfgang-Langenbeck-Strasse 4, 06120 Halle (Saale), Germany
| | - Julia Buske
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| | - Patrick Garidel
- Boehringer Ingelheim Pharma GmbH & Co. KG, Innovation Unit, PDB-TIP, Birkendorfer Straße 65, 88397 Biberach an der Riss, Germany
| |
Collapse
|
7
|
Yang RS, Bush DR, DeGraan-Weber N, Barbacci D, Zhang LK, Letarte S, Richardson D. Advancing Structure Characterization of PS-80 by Charge-Reduced Mass Spectrometry and Software-Assisted Composition Analysis. J Pharm Sci 2021; 111:314-322. [PMID: 34487745 DOI: 10.1016/j.xphs.2021.08.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/28/2022]
Abstract
The commercially available Polysorbate 80 (PS-80) is a highly heterogeneous product. It is a complex and structurally diverse mixture consisting of polymeric species containing polyoxyethylenes (POEs), fatty acid esters, with/or without a carbohydrate core. The core is primarily sorbitan, with some isosorbide and sorbitol. Depending on the sources of fatty acids and the degrees of esterification, multiple combinations of fatty acid esters are commonly observed. A number of POE intermediates, such as polyoxyethylene glycols, POE-sorbitans, POE-isosorbides, and an array of fatty acid esters from these intermediates remain in the raw material as well. The complex composition of PS-80 is difficult to control and poses a significant characterization challenge for its use in the pharmaceutical industry. Here, we present a novel solution for PS-80 characterization using ultra high-performance liquid chromatography coupled with charge-reduction high resolution mass spectrometry. Post column co-infusion of triethylamine focused the signal into mainly singly charged molecular ions and reduced the extent of in-source fragmentation, resulting in a simpler ion map and enhanced measurement of PS-80 species. The data processing workflow is designed to programmatically identify PS-80 component classes and reduce the burden of manually analyzing complex MS data. The 2-dimensional graphical representation of the data helps visualize these features. Together, these innovative methodologies enabled us to analyze components in PS-80 with unprecedented detail and shall be a useful tool to study formulation and stability of pharmaceutical preparations. The power of this approach was demonstrated by comparing the composition of PS-80 obtained from different vendors.
Collapse
Affiliation(s)
- Rong-Sheng Yang
- Analytical Research & Development, Merck & Co., Inc, Kenilworth, New Jersey 07033, United States.
| | | | | | - Damon Barbacci
- Analytical Research & Development, Merck & Co., Inc, Kenilworth, New Jersey 07033, United States
| | - Li-Kang Zhang
- Analytical Research & Development, Merck & Co., Inc, Kenilworth, New Jersey 07033, United States
| | - Simon Letarte
- Analytical Research & Development, Merck & Co., Inc, Kenilworth, New Jersey 07033, United States
| | - Douglas Richardson
- Analytical Research & Development, Merck & Co., Inc, Kenilworth, New Jersey 07033, United States
| |
Collapse
|