1
|
de Las Heras Prieto H, Cole LM, Forbes S, Palmer M, Schwartz-Narbonne R. Separation of mycolic acid isomers by cyclic ion mobility-mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9917. [PMID: 39313945 DOI: 10.1002/rcm.9917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
RATIONALE Mycobacterial species contain high concentrations of mycolic acids in their cell wall. Mycobacteria can pose a threat to both human health and the environment. Mass spectrometry lipidomic characterization can identify bacterial species and suggest targets for microbiological interventions. Due to the complex structures of mycolic acids and the possibility of isobaric isomers, multiple levels of separation are required for complete characterization. In this study, cyclic ion mobility (cIM) mass spectrometry (MS) was used for the analysis, separation and fragmentation of mycolic acids isomers from the bacterial species Gordonia amarae and Mycobacterium bovis. METHODS Mycolic acid isomers were interrogated from cultured G. amarae biomass and commercially available M. bovis mycolic acid extracts. These were infused into a cIM-enabled quadrupole time-of-flight MS. Ions of interest were non-simultaneously selected with the quadrupole and passed around the cyclic ion mobility device multiple times. Fragment ion analysis was then performed for the resolved isomers of the quadrupole-selected ions. RESULTS Repeated passes of the cIM device successfully resolved otherwise overlapping MA isomers, allowing isomer isolation and producing an ion-specific post-mobility fragmentation spectrum without isomeric interference. CONCLUSIONS Mycolic acids (MA) isomers from G. amarae and M. bovis were resolved, resulting in a high mobility resolution and low interference fragmentation analysis. These revealed varying patterns of MA isomers in the two species: G. amarae's most abundant ion of each set of MA has 1-2 conformations, while the MA + 2 m/z the most abundant ion of each set has 3-6 conformations. These were resolved after 70 passes of the cyclic device. M. bovis' most abundant ion of each keto-MA set has 2 conformations, while the keto-MA + 2 m/z has 1-2 conformations. These were resolved after 75 passes.
Collapse
Affiliation(s)
| | - Laura M Cole
- Biomolecular Research Centre, Sheffield Hallam University, Sheffield, UK
| | - Sarah Forbes
- Biomolecular Research Centre, Sheffield Hallam University, Sheffield, UK
| | | | | |
Collapse
|
2
|
Zercher BP, Gozzo TA, Wageman A, Bush MF. Enhancing the Depth of Analyses with Next-Generation Ion Mobility Experiments. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2023; 16:27-48. [PMID: 37000959 PMCID: PMC10545071 DOI: 10.1146/annurev-anchem-091522-031329] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent developments in ion mobility (IM) technology have expanded the capability to separate and characterize gas-phase ions of biomolecules, especially when paired with mass spectrometry. This next generation of IM technology has been ushered in by creative innovation focused on both instrument architectures and how electric fields are applied. In this review, we focus on the application of high-resolution and multidimensional IM to biomolecular analyses, encompassing the fields of glycomics, lipidomics, peptidomics, and proteomics. We highlight selected research that demonstrates the application of the new IM toolkit to challenging biomolecular systems. Through our review of recently published literature, we outline the current strengths of respective technologies and perspectives for future applications.
Collapse
Affiliation(s)
- Benjamin P Zercher
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Theresa A Gozzo
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - AnneClaire Wageman
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| | - Matthew F Bush
- Department of Chemistry, University of Washington, Seattle, Washington, USA;
| |
Collapse
|
3
|
Lamont L, Hadavi D, Bowman AP, Flinders B, Cooper‐Shepherd D, Palmer M, Jordens J, Mengerink Y, Honing M, Langridge J, Porta Siegel T, Vreeken RJ, Heeren RMA. High-resolution ion mobility spectrometry-mass spectrometry for isomeric separation of prostanoids after Girard's reagent T derivatization. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2023; 37:e9439. [PMID: 36415963 PMCID: PMC10078546 DOI: 10.1002/rcm.9439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 06/15/2023]
Abstract
RATIONALE Isomeric separation of prostanoids is often a challenge and requires chromatography and time-consuming sample preparation. Multiple prostanoid isomers have distinct in vivo functions crucial for understanding the inflammation process, including prostaglandins E2 (PGE2 ) and D2 (PGD2 ). High-resolution ion mobility spectrometry (IMS) based on linear ion transport in low-to-moderate electric fields and nonlinear ion transport in strong electric fields emerges as a broad approach for rapid separations prior to mass spectrometry. METHODS Derivatization with Girard's reagent T (GT) was used to overcome inefficient ionization of prostanoids in negative ionization mode due to poor deprotonation of the carboxylic acid group. Three high-resolution IMS techniques, namely linear cyclic IMS, linear trapped IMS, and nonlinear high-field asymmetric waveform IMS, were compared for the isomeric separation and endogenous detection of prostanoids present in intestinal tissue. RESULTS Direct infusion of GT-derivatized prostanoids proved to increase the ionization efficiency in positive ionization mode by a factor of >10, which enabled detection of these molecules in endogenous concentration levels. The high-resolution IMS comparison revealed its potential for rapid isomeric analysis of biologically relevant prostanoids. Strengths and weaknesses of both linear and nonlinear IMS are discussed. Endogenous prostanoid detection in intestinal tissue extracts demonstrated the applicability of our approach in biomedical research. CONCLUSIONS The applied derivatization strategy offers high sensitivity and improved stereoisomeric separation for screening of complex biological systems. The high-resolution IMS comparison indicated that the best sensitivity and resolution are achieved by linear and nonlinear IMS, respectively.
Collapse
Affiliation(s)
- Lieke Lamont
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| | - Darya Hadavi
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| | - Andrew P. Bowman
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| | - Bryn Flinders
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| | | | | | - Jan Jordens
- DSM Materials Science CenterGeleenMDThe Netherlands
| | | | - Maarten Honing
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| | | | - Tiffany Porta Siegel
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| | - Rob J. Vreeken
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
- Janssen R&DBeerseBelgium
| | - Ron M. A. Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass SpectrometryMaastricht UniversityMaastrichtThe Netherlands
| |
Collapse
|
4
|
Williamson DL, Nagy G. Isomer and Conformer-Specific Mass Distribution-Based Isotopic Shifts in High-Resolution Cyclic Ion Mobility Separations. Anal Chem 2022; 94:12890-12898. [PMID: 36067027 DOI: 10.1021/acs.analchem.2c02991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we present the use of mass distribution-based isotopic shifts in high-resolution cyclic ion mobility spectrometry-mass spectrometry (cIMS-MS)-based separations to characterize various isomeric species as well as conformers. Specifically, by using the observed relative arrival time values for the isotopologues found in the isotopic envelope after long pathlength cIMS-MS separations, we were able to distinguish dibromoaniline, dichloroaniline, and quaternary ammonium salt isomers, as well as a pair of 25-hydroxyvitamin D3 conformers based on their respective mass distribution-based shifts. Our observed shifts were highly reproducible and broadly applied to the isotopologues of various atoms (i.e., Cl, Br, and C). Additionally, through a control experiment, we determined that such shifts are indeed pathlength-independent, thus demonstrating that our presented methodology could be readily extended to other high-resolution IMS-MS platforms. These results are the first characterization of conformers using mass distribution-based IMS-MS shifts, as well as the first use of a commercial cIMS-MS platform to characterize isomers via their mass distribution-based shifts. We anticipate that our methodology will have broad applicability for biological analytes and that mass distribution-based shifts could potentially act as an added dimension of analysis in existing IMS-MS workflows in omics-based research. Specifically, we envision that the development of a database of these mass distribution-based shifts could, for example, enable the identification of unknown metabolites in complex matrices.
Collapse
Affiliation(s)
- David L Williamson
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Gabe Nagy
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
5
|
Shaw JB, Cooper-Shepherd DA, Hewitt D, Wildgoose JL, Beckman JS, Langridge JI, Voinov VG. Enhanced Top-Down Protein Characterization with Electron Capture Dissociation and Cyclic Ion Mobility Spectrometry. Anal Chem 2022; 94:3888-3896. [PMID: 35188751 PMCID: PMC8908312 DOI: 10.1021/acs.analchem.1c04870] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Tandem mass spectrometry of denatured, multiply charged high mass protein precursor ions yield extremely dense spectra with hundreds of broad and overlapping product ion isotopic distributions of differing charge states that yield an elevated baseline of unresolved "noise" centered about the precursor ion. Development of mass analyzers and signal processing methods to increase mass resolving power and manipulation of precursor and product ion charge through solution additives or ion-ion reactions have been thoroughly explored as solutions to spectral congestion. Here, we demonstrate the utility of electron capture dissociation (ECD) coupled with high-resolution cyclic ion mobility spectrometry (cIMS) to greatly increase top-down protein characterization capabilities. Congestion of protein ECD spectra was reduced using cIMS of the ECD product ions and "mobility fractions", that is, extracted mass spectra for segments of the 2D mobiligram (m/z versus drift time). For small proteins, such as ubiquitin (8.6 kDa), where mass resolving power was not the limiting factor for characterization, pre-IMS ECD and mobility fractions did not significantly increase protein sequence coverage, but an increase in the number of identified product ions was observed. However, a dramatic increase in performance, measured by protein sequence coverage, was observed for larger and more highly charged species, such as the +35 charge state of carbonic anhydrase (29 kDa). Pre-IMS ECD combined with mobility fractions yielded a 135% increase in the number of annotated isotope clusters and a 75% increase in unique product ions compared to processing without using the IMS dimension. These results yielded 89% sequence coverage for carbonic anhydrase.
Collapse
Affiliation(s)
- Jared B. Shaw
- e-MSion
Inc., 2121 NE Jack London Street, Corvallis, Oregon 97330, United States, (J.S.)
| | | | - Darren Hewitt
- Waters
Corporation, Wilmslow, Cheshire SK9 4AX, U.K.
| | | | - Joseph S. Beckman
- e-MSion
Inc., 2121 NE Jack London Street, Corvallis, Oregon 97330, United States,Linus
Pauling Institute and the Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331, United States
| | | | - Valery G. Voinov
- e-MSion
Inc., 2121 NE Jack London Street, Corvallis, Oregon 97330, United States
| |
Collapse
|
6
|
Skeene K, Khatri K, Soloviev Z, Lapthorn C. Current status and future prospects for ion-mobility mass spectrometry in the biopharmaceutical industry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2021; 1869:140697. [PMID: 34246790 DOI: 10.1016/j.bbapap.2021.140697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022]
Abstract
Detailed characterization of protein reagents and biopharmaceuticals is key in defining successful drug discovery campaigns, aimed at bringing molecules through different discovery stages up to development and commercialization. There are many challenges in this process, with complex and detailed analyses playing paramount roles in modern industry. Mass spectrometry (MS) has become an essential tool for characterization of proteins ever since the onset of soft ionization techniques and has taken the lead in quality assessment of biopharmaceutical molecules, and protein reagents, used in the drug discovery pipeline. MS use spans from identification of correct sequences, to intact molecule analyses, protein complexes and more recently epitope and paratope identification. MS toolkits could be incredibly diverse and with ever evolving instrumentation, increasingly novel MS-based techniques are becoming indispensable tools in the biopharmaceutical industry. Here we discuss application of Ion Mobility MS (IMMS) in an industrial setting, and what the current applications and outlook are for making IMMS more mainstream.
Collapse
Affiliation(s)
- Kirsty Skeene
- Biopharm Process Research, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Kshitij Khatri
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Collegeville, PA 19406, USA.
| | - Zoja Soloviev
- Protein, Cellular and Structural Sciences, Medicinal Science and Technology, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Cris Lapthorn
- Structure and Function Characterization, CMC-Analytical, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| |
Collapse
|
7
|
Rüger CP, Le Maître J, Maillard J, Riches E, Palmer M, Afonso C, Giusti P. Exploring Complex Mixtures by Cyclic Ion Mobility High-Resolution Mass Spectrometry: Application Toward Petroleum. Anal Chem 2021; 93:5872-5881. [PMID: 33784070 DOI: 10.1021/acs.analchem.1c00222] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The in-depth isomeric and isobaric description of ultra-complex organic mixtures remains one of the most challenging analytical tasks. In the last two decades, ion mobility coupled to high-performance mass spectrometry added an additional structural dimension. Despite tremendous instrumental improvements, commercial devices are still limited in ion mobility and mass spectrometric resolving power and struggle to resolve isobaric species and complex isomeric patterns. To overcome these limitations, we explored the capabilities of cyclic ion mobility high-resolution mass spectrometry with special emphasis on petrochemical applications. We could show that quadrupole-selected ion mobility mass spectrometry gives closer insights into the isomeric distribution. In combination with slicing the specific parts of the ion mobility dimension, isobaric interferences could be drastically removed. Collision-induced dissociation (CID) allowed separating structural groups of polycyclic aromatic hydrocarbons and heterocycles (PAH/PASH), deploying up to 10 passes in the cyclic ion mobility device. Finally, we introduce a data processing workflow to resolve the 3.4 mDa SH4/C3 mass split by combining ion mobility and mass spectrometric resolving power. Cyclic ion mobility with the intelligent design of experiments and processing routines will be a powerful approach addressing the isobaric and isomeric complexity of ultra-complex mixtures.
Collapse
Affiliation(s)
- Christopher P Rüger
- Joint Mass Spectrometry Centre (JMSC)/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany.,International Joint Laboratory-iC2MC: Complex Matrices Molecular Characterization, Total Research and Technology Gonfreville (TRTG), 76700 Harfleur, France.,Department Life, Light & Matter (LLM), University of Rostock, 18051 Rostock, Germany
| | - Johann Le Maître
- International Joint Laboratory-iC2MC: Complex Matrices Molecular Characterization, Total Research and Technology Gonfreville (TRTG), 76700 Harfleur, France.,TOTAL Refining and Chemicals, Gonfreville, 76700 Harfleur, France
| | - Julien Maillard
- International Joint Laboratory-iC2MC: Complex Matrices Molecular Characterization, Total Research and Technology Gonfreville (TRTG), 76700 Harfleur, France.,Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen-Normandie, INSA de Rouen, CNRS, IRCOF, 76130 Mont-Saint-Aignan, France
| | | | | | - Carlos Afonso
- International Joint Laboratory-iC2MC: Complex Matrices Molecular Characterization, Total Research and Technology Gonfreville (TRTG), 76700 Harfleur, France.,Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen-Normandie, INSA de Rouen, CNRS, IRCOF, 76130 Mont-Saint-Aignan, France
| | - Pierre Giusti
- International Joint Laboratory-iC2MC: Complex Matrices Molecular Characterization, Total Research and Technology Gonfreville (TRTG), 76700 Harfleur, France.,TOTAL Refining and Chemicals, Gonfreville, 76700 Harfleur, France.,Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen-Normandie, INSA de Rouen, CNRS, IRCOF, 76130 Mont-Saint-Aignan, France
| |
Collapse
|
8
|
Rüger CP, Le Maître J, Riches E, Palmer M, Orasche J, Sippula O, Jokiniemi J, Afonso C, Giusti P, Zimmermann R. Cyclic Ion Mobility Spectrometry Coupled to High-Resolution Time-of-Flight Mass Spectrometry Equipped with Atmospheric Solid Analysis Probe for the Molecular Characterization of Combustion Particulate Matter. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:206-217. [PMID: 33237780 DOI: 10.1021/jasms.0c00274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anthropogenic air pollution has a severe impact on climate and human health. The immense molecular complexity and diversity of particulate matter (PM) is a result of primary organic aerosol (POA) as well as secondary organic aerosols (SOAs). In this study, a direct inlet probe (DIP), i.e., atmospheric solids analysis probe (ASAP), with ion mobility high-resolution mass spectrometric detection is applied. Primary particulate matter emissions from three sources were investigated. Furthermore, photochemically aged emissions were analyzed. DIP introduction allowed for a direct analysis with almost no sample preparation and resulted in a complex molecular pattern. This pattern shifted through oxidation processes toward heavier species. For diesel emissions, the fuel's chemical characteristic is partially transferred to the particulate matter by incomplete combustion and characteristic alkylated series were found. Polycyclic aromatic hydrocarbons (PAHs) were identified as major contributors. Ion mobility analysis results in drift time profiles used for structural analysis. The apex position was used to prove structural changes, whereas the full-width-at-half-maximum was used to address the isomeric diversity. With this concept, the dominance of one or a few isomers for certain PAHs could be shown. In contrast, a broad isomeric diversity was found for oxygenated species. For the in-depth specification of fresh and aged spruce emissions, the ion mobility resolving power was almost doubled by allowing for three passes in the circular traveling wave design. The results prove that ASAP coupled with ion mobility spectrometry-mass spectrometry (IMS-MS) serves as a promising analytical approach for tackling the vast molecular complexity of PM.
Collapse
Affiliation(s)
- Christopher P Rüger
- Joint Mass Spectrometry Centre/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
- International Joint Laboratory-iC2MC: Complex Matrices Molecular Characterization, Total Research and Technology Gonfreville (TRTG), 76700 Harfleur, France
| | - Johann Le Maître
- International Joint Laboratory-iC2MC: Complex Matrices Molecular Characterization, Total Research and Technology Gonfreville (TRTG), 76700 Harfleur, France
- TOTAL Refining and Chemicals, Gonfreville, 76700 Harfleur, France
| | | | - Martin Palmer
- Waters Corporation, SK9 4AX Wilmslow, United Kingdom
| | - Jürgen Orasche
- Joint Mass Spectrometry Centre (JMSC)/Helmholtz Zentrum München, Comprehensive Molecular Analytics, 85764 Neuherberg, Germany
| | - Olli Sippula
- University of Eastern Finland, 70211 Kuopio, Finland
| | | | - Carlos Afonso
- International Joint Laboratory-iC2MC: Complex Matrices Molecular Characterization, Total Research and Technology Gonfreville (TRTG), 76700 Harfleur, France
- Normandie Université, COBRA, UMR 6014 et FR 3038, Université de Rouen-Normandie, INSA de Rouen, CNRS, IRCOF, 76130 Mont Saint Aignan, France
| | - Pierre Giusti
- International Joint Laboratory-iC2MC: Complex Matrices Molecular Characterization, Total Research and Technology Gonfreville (TRTG), 76700 Harfleur, France
- TOTAL Refining and Chemicals, Gonfreville, 76700 Harfleur, France
| | - Ralf Zimmermann
- Joint Mass Spectrometry Centre/Chair of Analytical Chemistry, University of Rostock, 18059 Rostock, Germany
- Joint Mass Spectrometry Centre (JMSC)/Helmholtz Zentrum München, Comprehensive Molecular Analytics, 85764 Neuherberg, Germany
| |
Collapse
|