1
|
Letourneau DR, Marzullo BP, Alexandridou A, Barrow MP, O'Connor PB, Volmer DA. Characterizing lignins from various sources and treatment processes after optimized sample preparation techniques and analysis via ESI-HRMS and custom mass defect software tools. Anal Bioanal Chem 2023; 415:6663-6675. [PMID: 37714972 PMCID: PMC10598097 DOI: 10.1007/s00216-023-04942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
Sample preparation of complex, natural mixtures such as lignin prior to mass spectrometry analysis, however minimal, is a critical step in ensuring accurate and interference-free results. Modern shotgun-MS techniques, where samples are directly injected into a high-resolution mass spectrometer (HRMS) with no prior separation, usually still require basic sample pretreatment such as filtration and appropriate solvents for full dissolution and compatibility with atmospheric pressure ionization interfaces. In this study, sample preparation protocols have been established for a unique sample set consisting of a wide variety of degraded lignin samples from numerous sources and treatment processes. The samples were analyzed via electrospray (ESI)-HRMS in negative and positive ionization modes. The resulting information-rich HRMS datasets were then transformed into the mass defect space with custom R scripts as well as the open-source Constellation software as an effective way to visualize changes between the samples due to the sample preparation and ionization conditions as well as a starting point for comprehensive characterization of these varied sample sets. Optimized conditions for the four investigated lignins are proposed for ESI-HRMS analysis for the first time, giving an excellent starting point for future studies seeking to better characterize and understand these complex mixtures.
Collapse
Affiliation(s)
- Dane R Letourneau
- Department of Chemistry, Humboldt University Berlin, 12489, Berlin, Germany
| | - Bryan P Marzullo
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Mark P Barrow
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Dietrich A Volmer
- Department of Chemistry, Humboldt University Berlin, 12489, Berlin, Germany.
| |
Collapse
|
2
|
Zhang Q, Li Y, Zhong X, Fu W, Luo X, Feng J, Yuan M, Xiao L, Xu H. Polyphenolic-protein-polysaccharide conjugates from Spica of Prunella vulgaris: Chemical profile and anti-herpes simplex virus activities. Int J Biol Macromol 2021:S0141-8130(21)02605-2. [PMID: 34871656 DOI: 10.1016/j.ijbiomac.2021.11.200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/14/2021] [Accepted: 11/27/2021] [Indexed: 10/19/2022]
Abstract
Previous studies showed that the water extract (PVW) from Spica of Prunella vulgaris Linn. (Labiatae) exerts anti-herpes simplex virus (HSV) activity. Evaluation the antiviral activity of the graded ethanol precipitations indicated that 30% ethanol precipitate (PVE30) was the active principle of water extract (PVW). Further activity-oriented separation of PVE30 through salting-out method revealed that the anti-HSV activity of P. vulgaris glycoconjugates (PVG) was more potent than PVE30 and PVW, 2-fold and 4-fold, respectively. UPLC-QTOF-MS/MS, FT-IR and NMR techniques identified PVG as a type of polyphenolic-protein-polysaccharides (PPPs) with an average molecular weight of 41.69 kDa. PVG was composed of dibenzylbutyrolactone lignan units, and rich in galacturonic acid, xylose, rhamnose, rhamnose, arabinose, glucose monosaccharide units, glutamic acid and aspartic acid. Further in vitro antiviral testing confirmed that PVG substantially and stably inhibited acyclovir (ACV) resistant HSV strains; its inhibitory action was even better than the positive control ACV. Overall, our findings support PVG as a potential drug resource for anti-HSV therapy.
Collapse
Affiliation(s)
- Qunshuo Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Yang Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Xuanlei Zhong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Wenwei Fu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Xiaomei Luo
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Jiling Feng
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Man Yuan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China
| | - Lianbo Xiao
- Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, Guanghua Integrative Medicine Hospital, Shanghai 200052, China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Engineering Research Centre of Shanghai Colleges for TCM New Drug Discovery, Shanghai 201203, China.
| |
Collapse
|
3
|
Kosyakov DS, Pikovskoi II, Ul'yanovskii NV. Dopant-assisted atmospheric pressure photoionization Orbitrap mass spectrometry - An approach to molecular characterization of lignin oligomers. Anal Chim Acta 2021; 1179:338836. [PMID: 34535257 DOI: 10.1016/j.aca.2021.338836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/19/2021] [Accepted: 07/04/2021] [Indexed: 12/16/2022]
Abstract
Lignin is the second most abundant biopolymer in nature and is considered an important renewable source of aromatic compounds. One of the most promising analytical methods for molecular characterization of lignin is Orbitrap high-resolution mass spectrometry with atmospheric pressure photoionization (APPI), proved itself in the study of lignins of various origins and their depolymerization products. In this work, the photoionization of lignin using acetone, 1,4-dioxane, and THF as solvents for the biopolymer and APPI dopants providing the generation of protonated and deprotonated molecules of lignin oligomers has been studied. The ionization conditions were optimized on the basis of the dependences of the total ion current on temperature and the flow rate of the solution into the ion source. Lignin degradation processes under APPI conditions occur mainly with the cleavage of ether β-O-4 bonds between phenylpropane structural units, demethylation (negative ion mode), as well as the loss of water and formaldehyde (positive ion mode). Negative ion mode APPI provides a higher ionization efficiency in the region of high molecular weights, however, it is characterized by an increased fragmentation of β-O-4 ether bonds compared to APPI(+) leading to a partial depolymerization of lignin in the ion source. The combination of APPI with Orbitrap high-resolution mass spectrometry allows obtaining mass spectra of coniferous and deciduous wood lignins with resolved fine structure and containing signals of up to 3000 oligomers in the mass range of 300-1800 Da. This can be used for comprehensive characterization of lignins at molecular level and tracking changes in biopolymer chemical composition in various processes.
Collapse
Affiliation(s)
- Dmitry S Kosyakov
- Core Facility Center "Arktika", M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, Arkhangelsk, 163002, Russia.
| | - Ilya I Pikovskoi
- Core Facility Center "Arktika", M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, Arkhangelsk, 163002, Russia
| | - Nikolay V Ul'yanovskii
- Core Facility Center "Arktika", M.V. Lomonosov Northern (Arctic) Federal University, Northern Dvina Emb. 17, Arkhangelsk, 163002, Russia
| |
Collapse
|
4
|
Mikhael A, Fridgen TD, Delmas M, Banoub J. Top-down lignomics analysis of the French oak lignin by atmospheric pressure photoionization and electrospray ionization quadrupole time-of-flight tandem mass spectrometry: Identification of a novel series of lignans. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4676. [PMID: 33200552 DOI: 10.1002/jms.4676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
We report herein the top-down lignomic analysis of virgin released lignin (VRL) extracted from the French oak wood using atmospheric pressure photoionization quadrupole orthogonal time-of-flight mass spectrometry (APPI-QqTOF-MS) (+ ion mode). Eight major protonated lignin oligomers were identified using the APPI-QqTOF-MS/MS of this complex VRL mixture without any kind of purification. This series of protonated oligomer ions were identified as neolignan cedrusin (1), five different aryltetralin lignans dimers (2-6), one lignan-dehydroshikimic acid complex (7), and a lignan trimer (8). Similarly, electrospray ionization (ESI)-QqTOF-MS (+ ion mode) allowed us to identify three extra aryltetralin lignan derivatives (9-11). The Kendrick mass defect analysis was used for the simplification of this complex APPI-QqTOF-MS into a compositional map, which displayed clustering points of associated ions possessing analogous elemental composition. This series of novel protonated molecules were selected and subjected to low-energy collision-induced dissociation (CID)-MS/MS analyses. The obtained gas-phase fragmentation patterns helped to tentatively assign their most likely structures. Also, it was found that the use of different APPI and ESI ambient ionization techniques enhances the ionization of different types of lignin oligomers.
Collapse
Affiliation(s)
- Abanoub Mikhael
- Chemistry Department, Memorial University, St John's, 283 Prince Philip Dr, St John's, Newfoundland and Labrador, A1B 3X7, Canada
| | - Travis D Fridgen
- Chemistry Department, Memorial University, St John's, 283 Prince Philip Dr, St John's, Newfoundland and Labrador, A1B 3X7, Canada
| | - Michel Delmas
- Chemical Engineering Laboratory 4, University of Toulouse Inp-Ensiacet, Allée Emile Monso, Toulouse, 31432, France
| | - Joseph Banoub
- Chemistry Department, Memorial University, St John's, 283 Prince Philip Dr, St John's, Newfoundland and Labrador, A1B 3X7, Canada
- Science Branch, Special Projects, Fisheries and Oceans Canada, 80 East White Hills Road, St John's, Newfoundland and Labrador, A1C 5X1, Canada
| |
Collapse
|