1
|
Martinho J, Simão AY, Barroso M, Gallardo E, Rosado T. Determination of Antiepileptics in Biological Samples-A Review. Molecules 2024; 29:4679. [PMID: 39407608 PMCID: PMC11477610 DOI: 10.3390/molecules29194679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/12/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Epilepsy remains a disease that affects many people around the world. With the development of new drugs to treat this condition, the importance of therapeutic drug monitoring continues to rise and remains a challenge for the medical community. This review article explores recent advances in the detection of antiepileptic drugs across various sample types commonly used for drug monitoring, with a focus on their applications and impact. Some of these new methods have proven to be simpler, greener, and faster, making them easier to apply in the context of therapeutic drug monitoring. Additionally, besides the classic use of blood and its derivatives, there has been significant research into the application of alternative matrices due to their ease of sample collection and capacity to reflect drug behavior in blood. These advances have contributed to increasing the efficacy of therapeutic drug monitoring while enhancing its accessibility to the population.
Collapse
Affiliation(s)
- João Martinho
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (J.M.); (A.Y.S.)
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6200-000 Covilhã, Portugal
| | - Ana Y. Simão
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (J.M.); (A.Y.S.)
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6200-000 Covilhã, Portugal
| | - Mário Barroso
- AlphaBiolabs, 14 Webster Court, Carina Park, Warrington WA5 8WD, UK;
- Serviço de Química e Toxicologia Forenses, Instituto Nacional de Medicina Legal e Ciências Forenses—Delegação do Sul, 1169-201 Lisboa, Portugal
| | - Eugenia Gallardo
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (J.M.); (A.Y.S.)
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6200-000 Covilhã, Portugal
- Centro Académico Clínico das Beiras (CACB)-Grupo de Problemas Relacionados com Toxicofilias, 6200-000 Covilhã, Portugal
| | - Tiago Rosado
- Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde da Universidade da Beira Interior (CICS-UBI), 6200-506 Covilhã, Portugal; (J.M.); (A.Y.S.)
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6200-000 Covilhã, Portugal
- Centro Académico Clínico das Beiras (CACB)-Grupo de Problemas Relacionados com Toxicofilias, 6200-000 Covilhã, Portugal
| |
Collapse
|
2
|
Pang B, Zhang Y, Zhou Y, Liu ZF, Liu XJ, Feng XS. Recent Update on Pretreatment and Analysis Methods of Buprenorphine in Different Matrix. Crit Rev Anal Chem 2024; 54:1243-1272. [PMID: 35979823 DOI: 10.1080/10408347.2022.2111196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Buprenorphine is one of the most commonly used pain-killing drugs due to its lengthy duration of action and high potency. However, excessive usage of buprenorphine can be harmful to one's health and prolonged use might result in addiction. Additionally, an increasing number of cases have been documented involving the illegal use of buprenorphine. Therefore, a variety of effective and reliable methods for pretreatment and determination of buprenorphine and its main metabolite norbuprenorphine have been established. This review aims to update the current state of pretreatment and detection techniques for buprenorphine and norbuprenorphine from January 2010 to March 2022. Pretreatment methods include several traditional extraction methods, solid-phase extraction, QuECHERS, various micro-extraction techniques, etc. while analytical methods include LC-MS, LC coupled with other detectors, GC-MS, capillary electrophoresis, electrochemical sensors, etc. The pros and cons of various techniques were compared and summarized, and the prospects were provided.HIGHLIGHTSProgress in pretreatment and detection methods for buprenorphine is demonstrated.Pros and cons of different pretreatment and analysis methods are compared.New materials (such as nanomaterials and magnetic materials) used in buprenorphine pretreatment are summarized.Newly emerged environmental-friendly methods are discussed.
Collapse
Affiliation(s)
- Bo Pang
- The Queen's University of Belfast Joint College, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yu Zhou
- Department of Pharmacy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Fei Liu
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xiao-Jun Liu
- The Queen's University of Belfast Joint College, China Medical University, Shenyang, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Zhao W, Alshogran OY, Zhang H, Joshi A, Krans EE, Caritis S, Shaik IH, Venkataramanan R. Simplified processing and rapid quantification of buprenorphine, norbuprenorphine, and their conjugated metabolites in human plasma using UPLC-MS/MS: Assessment of buprenorphine exposure during opioid use disorder treatment. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5015. [PMID: 38501738 DOI: 10.1002/jms.5015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/19/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
Opioid use disorder (OUD) is a chronic neurobehavioral ailment and is prevalent in pregnancy. OUD is commonly treated with methadone or buprenorphine (BUP). Pregnancy is known to alter the pharmacokinetics of drugs and may lead to changes in drug exposure and response. A simple, specific, and sensitive analytical method for measuring the parent drug and its metabolites is valuable for assessing the impact of pregnancy on drug exposure. A new liquid chromatography-tandem mass spectrometric method that utilized a simple protein precipitation procedure for sample preparation and four deuterated internal standards for quantification was developed and validated for BUP and its major metabolites (norbuprenorphine [NBUP], buprenorphine-glucuronide [BUP-G], and norbuprenorphine-glucuronide [NBUP-G]) in human plasma. The standard curve was linear over the concentration range of 0.05-100 ng/mL for BUP and NBUP, and 0.1-200 ng/mL for BUP-G and NBUP-G. Intra- and inter-day bias and precision were within ±15% of nominal values for all the analytes. Quality controls assessed at four levels showed high recovery consistently for all the analytes with minimal matrix effect. Adequate analyte stability was observed at various laboratory conditions tested. Overall, the developed method is simple, sensitive, accurate and reproducible, and was successfully applied for the quantification of BUP and its metabolites in plasma samples collected from pregnant women in a clinical study assessing BUP exposure during OUD treatment.
Collapse
Affiliation(s)
- Wenchen Zhao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Osama Y Alshogran
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Hongfei Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anand Joshi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elizabeth E Krans
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, UPMC Magee-Women's Hospital, Pittsburgh, Pennsylvania, USA
- Magee-Women's Research Institute, Pittsburgh, Pennsylvania, USA
| | - Steve Caritis
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, UPMC Magee-Women's Hospital, Pittsburgh, Pennsylvania, USA
- Magee-Women's Research Institute, Pittsburgh, Pennsylvania, USA
| | - Imam H Shaik
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Raman Venkataramanan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Magee-Women's Research Institute, Pittsburgh, Pennsylvania, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Salzmann L, Wild J, Singh N, Schierscher T, Liesch F, Bauland F, Geistanger A, Risch L, Geletneky C, Seger C, Taibon J. An isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC-MS/MS)-based candidate reference measurement procedure (RMP) for the quantification of gabapentin in human serum and plasma. Clin Chem Lab Med 2023; 61:1955-1966. [PMID: 36689915 DOI: 10.1515/cclm-2022-0998] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/23/2022] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To describe and validate a reference measurement procedure (RMP) for gabapentin, employing quantitative nuclear magnetic resonance (qNMR) spectroscopy to determine the absolute content of the standard materials in combination with isotope dilution-liquid chromatograph-tandem mass spectrometry (ID-LC-MS/MS) to accurately measure serum and plasma concentrations. METHODS A sample preparation protocol based on protein precipitation in combination with LC-MS/MS analysis using a C8 column for chromatographic separation was established for the quantification of gabapentin. Assay validation and determination of measurement uncertainty were performed according to guidance from the Clinical and Laboratory Standards Institute, the International Conference on Harmonization, and the Guide to the expression of uncertainty in measurement. ID-LC-MS/MS parameters evaluated included selectivity, specificity, matrix effects, precision and accuracy, inter-laboratory equivalence, and uncertainty of measurement. RESULTS The use of qNMR provided traceability to International System (SI) units. The chromatographic assay was highly selective, allowing baseline separation of gabapentin and the gabapentin-lactam impurity, without observable matrix effects. Variability between injections, preparations, calibrations, and days (intermediate precision) was <2.3%, independent of the matrix, while the coefficient of variation for repeatability was 0.9-2.0% across all concentration levels. The relative mean bias ranged from -0.8-1.0% for serum and plasma samples. Passing-Bablok regression analysis indicated very good inter-laboratory agreement; the slope was 1.00 (95% confidence interval [CI] 0.98 to 1.03) and the intercept was -0.05 (95% CI -0.14 to 0.03). Pearson's correlation coefficient was ≥0.996. Expanded measurement uncertainties for single measurements were found to be ≤5.0% (k=2). CONCLUSIONS This analytical protocol for gabapentin, utilizing traceable and selective qNMR and ID-LC-MS/MS techniques, allows for the standardization of routine tests and the reliable evaluation of clinical samples.
Collapse
Affiliation(s)
| | - Janik Wild
- Dr. Risch Ostschweiz AG, Buchs, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Shan X, Cao C, Yang B. Analytical Approaches for the Determination of Buprenorphine, Methadone and Their Metabolites in Biological Matrices. Molecules 2022; 27:molecules27165211. [PMID: 36014451 PMCID: PMC9415157 DOI: 10.3390/molecules27165211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
The abuse of buprenorphine and methadone has grown into a rising worldwide issue. After their consumption, buprenorphine, methadone and their metabolites can be found in the human organism. Due to the difficulty in the assessment of these compounds by routine drug screening, the importance of developing highly sensitive analytical approaches is undeniable. Liquid chromatography tandem mass spectrometry is the preferable technique for the determination of buprenorphine, methadone and their metabolites in biological matrices including urine, plasma, nails or oral fluids. This research aims to review a critical discussion of the latest trends for the monitoring of buprenorphine, methadone and their metabolites in various biological specimens.
Collapse
|