Shafi Z, Gibson JK. Organolanthanide Complexes Containing Ln-CH
3 σ-bonds: Unexpectedly Similar Hydrolysis Rates for Trivalent and Tetravalent Organocerium.
Inorg Chem 2023;
62:18399-18413. [PMID:
37910232 DOI:
10.1021/acs.inorgchem.3c02287]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
We report the gas-phase preparation, isolation, and reactivity of a series of organolanthanides featuring the Ln-CH3 bond. The complexes are formed by decarboxylating anionic lanthanide acetates to form trivalent [LnIII(CH3)(CH3CO2)3]- (Ln = La, Ce, Pr, Nd, Sm, Tb, Tm, Yb, Lu), divalent [EuII(CH3)(CH3CO2)2]-, and the first examples of tetravalent organocerium complexes featuring CeIV-Calkyl σ-bonds: [CeIV(O)(CH3)(CH3CO2)2]- and [CeIV(O)(CH3)(NO3)2]-. Attempts to isolate PrIV-CH3 and TbIV-CH3 were unsuccessful; however, fragmentation patterns reveal that the oxidation of LnIII to a LnIV-oxo-acetate complex is more favorable for Ln = Pr than for Ln = Tb. The rate of Ln-CH3 hydrolysis is a measure of bond stability, and it decreases from LaIII-CH3 to LuIII-CH3, with increasing steric crowding for smaller Ln stabilizing the harder Ln-CH3 bond against hydrolysis. [EuII(CH3)(CH3CO2)2]- engages in a much faster hydrolysis versus LnIII-CH3. The surprising observation of similar hydrolysis rates for CeIV-CH3 and CeIII-CH3 is discussed with respect to sterics, the oxo ligand, and bond covalency in σ-bonded organolanthanides.
Collapse