1
|
Gorbachuk M, Machetanz K, Weinbrenner E, Grimm F, Wuttke TV, Wang S, Ethofer S, Tatagiba M, Rona S, Honegger J, Naros G. Robot-assisted stereoencephalography vs subdural electrodes in the evaluation of temporal lobe epilepsy. Epilepsia Open 2023; 8:888-897. [PMID: 37149851 PMCID: PMC10472365 DOI: 10.1002/epi4.12756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/15/2022] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
OBJECTIVE Invasive video-electroencephalography (iVEEG) is the gold standard for evaluation of refractory temporal lobe epilepsy before second stage resective surgery (SSRS). Traditionally, the presumed seizure onset zone (SOZ) has been covered with subdural electrodes (SDE), a very invasive procedure prone to complications. Temporal stereoelectroencephalography (SEEG) with conventional frame-based stereotaxy is time-consuming and impeded by the geometry of the frame. The introduction of robotic assistance promised a simplification of temporal SEEG implantation. However, the efficacy of temporal SEEG in iVEEG remains unclear. The aim of this study was therefore to describe the efficiency and efficacy of SEEG in iVEEG of temporal lobe epilepsy. METHODS This retrospective study enrolled 60 consecutive patients with medically intractable epilepsy who underwent iVEEG of a potential temporal SOZ by SDE (n = 40) or SEEG (n = 20). Surgical time efficiency was analyzed by the skin-to-skin time (STS) and the total procedure time (TPT) and compared between groups (SDE vs SEEG). Surgical risk was depicted by the 90-day complication rate. Temporal SOZ were treated by SSRS. Favorable outcome (Engel°1) was assessed after 1 year of follow-up. RESULTS Robot-assisted SEEG significantly reduced the duration of surgery (STS and TPT) compared to SDE implantations. There was no significant difference in complication rates. Notably, all surgical revisions in this study were attributed to SDE. Unilateral temporal SOZ was detected in 34/60 cases. Of the 34 patients, 30 underwent second stage SSRS. Both SDE and SEEG had a good predictive value for the outcome of temporal SSRS with no significant group difference. SIGNIFICANCE Robot-assisted SEEG improves the accessibility of the temporal lobe for iVEEG by increasing surgical time efficiency and by simplifying trajectory selection without losing its predictive value for SSRS.
Collapse
Affiliation(s)
- Mykola Gorbachuk
- Neurosurgical Clinic, Department of Neurosurgery and NeurotechnologyEberhard Karls UniversityTuebingenGermany
| | - Kathrin Machetanz
- Neurosurgical Clinic, Department of Neurosurgery and NeurotechnologyEberhard Karls UniversityTuebingenGermany
| | - Eliane Weinbrenner
- Neurosurgical Clinic, Department of Neurosurgery and NeurotechnologyEberhard Karls UniversityTuebingenGermany
| | - Florian Grimm
- Neurosurgical Clinic, Department of Neurosurgery and NeurotechnologyEberhard Karls UniversityTuebingenGermany
| | - Thomas V. Wuttke
- Neurosurgical Clinic, Department of Neurosurgery and NeurotechnologyEberhard Karls UniversityTuebingenGermany
| | - Sophie Wang
- Neurosurgical Clinic, Department of Neurosurgery and NeurotechnologyEberhard Karls UniversityTuebingenGermany
| | - Silke Ethofer
- Neurosurgical Clinic, Department of Neurosurgery and NeurotechnologyEberhard Karls UniversityTuebingenGermany
| | - Marcos Tatagiba
- Neurosurgical Clinic, Department of Neurosurgery and NeurotechnologyEberhard Karls UniversityTuebingenGermany
| | - Sabine Rona
- Neurosurgical Clinic, Department of Neurosurgery and NeurotechnologyEberhard Karls UniversityTuebingenGermany
| | - Jürgen Honegger
- Neurosurgical Clinic, Department of Neurosurgery and NeurotechnologyEberhard Karls UniversityTuebingenGermany
| | - Georgios Naros
- Neurosurgical Clinic, Department of Neurosurgery and NeurotechnologyEberhard Karls UniversityTuebingenGermany
| |
Collapse
|
2
|
Machetanz K, Grimm F, Wang S, Schuhmann MU, Tatagiba M, Gharabaghi A, Naros G. Rediscovery of the transcerebellar approach: improving the risk-benefit ratio in robot-assisted brainstem biopsies. Neurosurg Focus 2022; 52:E12. [DOI: 10.3171/2021.10.focus21359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2021] [Accepted: 10/18/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
Conventional frame-based stereotaxy through a transfrontal approach (TFA) is the gold standard in brainstem biopsies. Because of the high surgical morbidity and limited impact on therapy, brainstem biopsies are controversial. The introduction of robot-assisted stereotaxy potentially improves the risk-benefit ratio by simplifying a transcerebellar approach (TCA). The aim of this single-center cohort study was to evaluate the risk-benefit ratio of transcerebellar brainstem biopsies performed by 2 different robotic systems. In addition to standard quality indicators, a special focus was set on trajectory selection for reducing surgical morbidity.
METHODS
This study included 25 pediatric (n = 7) and adult (n = 18) patients who underwent 26 robot-assisted biopsies via a TCA. The diagnostic yield, complication rate, trajectory characteristics (i.e., length, anatomical entry, and target-point location), and skin-to-skin (STS) time were evaluated. Transcerebellar and hypothetical transfrontal trajectories were reconstructed and transferred into a common MR space for further comparison with anatomical atlases.
RESULTS
Robot-assisted, transcerebellar biopsies demonstrated a high diagnostic yield (96.2%) while exerting no surgical mortality and no permanent morbidity in both pediatric and adult patients. Only 3.8% of cases involved a transient neurological deterioration. Transcerebellar trajectories had a length of 48.4 ± 7.3 mm using a wide stereotactic corridor via crus I or II of the cerebellum and the middle cerebellar peduncle. The mean STS time was 49.5 ± 23.7 minutes and differed significantly between the robotic systems (p = 0.017). The TFA was characterized by longer trajectories (107.4 ± 11.8 mm, p < 0.001) and affected multiple eloquent structures. Transfrontal target points were located significantly more medial (−3.4 ± 7.2 mm, p = 0.042) and anterior (−3.9 ± 8.4 mm, p = 0.048) in comparison with the transcerebellar trajectories.
CONCLUSIONS
Robot-assisted, transcerebellar stereotaxy can improve the risk-benefit ratio of brainstem biopsies by avoiding the restrictions of a TFA and conventional frame-based stereotaxy. Profound registration and anatomical-functional trajectory selection were essential to reduce mortality and morbidity.
Collapse
Affiliation(s)
- Kathrin Machetanz
- Neurosurgical Clinic, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen, Germany
| | - Florian Grimm
- Neurosurgical Clinic, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen, Germany
| | - Sophie Wang
- Neurosurgical Clinic, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen
| | - Martin U. Schuhmann
- Neurosurgical Clinic, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen
| | - Marcos Tatagiba
- Neurosurgical Clinic, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen
| | - Alireza Gharabaghi
- Neurosurgical Clinic, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen, Germany
| | - Georgios Naros
- Neurosurgical Clinic, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen
- Institute for Neuromodulation and Neurotechnology, Department of Neurosurgery and Neurotechnology, Eberhard Karls University, Tuebingen, Germany
| |
Collapse
|