1
|
Berteli TS, Vireque AA, Borges ED, Da Luz CM, Navarro PA. Membrane lipid changes in mouse blastocysts induced by ovarian stimulation, IVF and oocyte vitrification. Reprod Biomed Online 2023; 46:887-902. [PMID: 37095039 DOI: 10.1016/j.rbmo.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/27/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
RESEARCH QUESTION Is the membrane lipid profile of mice blastocysts affected by ovarian stimulation, IVF and oocyte vitrification? Could supplementation of vitrification media with L-carnitine and fatty acids prevent membrane phospholipid changes in blastocysts from vitrified oocytes? DESIGN Experimental study comparing the lipid profile of murine blastocysts produced from natural mating, superovulated cycles or after IVF submitted or not to vitrification. For in-vitro experiments, 562 oocytes from superovulated females were randomly divided into four groups: fresh oocytes fertilized in vitro and vitrified groups: Irvine Scientific (IRV); Tvitri-4 (T4) or T4 supplemented with L-carnitine and fatty acids (T4-LC/FA). Fresh or vitrified-warmed oocytes were inseminated and cultured for 96 h or 120 h. The lipid profile of nine of the best quality blastocysts from each experimental group was assessed by multiple reaction monitoring profiling method. Significantly different lipids or transitions between groups were found using univariate statistics (P < 0.05; fold change = 1.5) and multivariate statistical methods. RESULTS A total of 125 lipids in blastocysts were profiled. Statistical analysis revealed several classes of phospholipids affected in the blastocysts by ovarian stimulation, IVF, oocyte vitrification, or all. L-carnitine and fatty acid supplements prevented, to a certain extent, changes in phospholipid and sphingolipid contents in the blastocysts. CONCLUSION Ovarian stimulation alone, or in association with IVF, promoted changes in phospholipid profile and abundance of blastocysts. A short exposure time to the lipid-based solutions during oocyte vitrification was sufficient to induce changes in the lipid profile that were sustained until the blastocyst stage.
Collapse
Affiliation(s)
- Thalita S Berteli
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.; National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil..
| | - Alessandra A Vireque
- Invitra - Assisted Reproductive Technologies Ltd - Supera Innovation and Technology Park, Ribeirão Preto, São Paulo, Brazil
| | - Eduardo D Borges
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.; National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Caroline M Da Luz
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.; National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Paula A Navarro
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.; National Institute of Hormones and Women's Health, CNPq, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| |
Collapse
|
2
|
Jitjumnong J, Tang PC. Bone Morphogenetic Protein 15 (BMP-15) Improves In Vitro Mouse Folliculogenesis. Animals (Basel) 2023; 13:ani13060980. [PMID: 36978521 PMCID: PMC10044016 DOI: 10.3390/ani13060980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Multilayered secondary follicles were encapsulated in a 0.5% alginate matrix and cultured in a 3D culture system supplemented with bone morphogenetic protein 15 (BMP-15; 15 ng/mL) for 12 days. The in vitro development of ovarian follicles was evaluated. On day 12, the follicle diameter, follicle survival rate, and antrum formation rate were significantly higher for follicles cultured in BMP-15-supplemented medium than those cultured in regular medium. The percentage of ovulated metaphase II oocytes retrieved from follicles cultured in BMP-15-supplemented medium was greater than that of oocytes retrieved from follicles cultured in regular medium. The secretion of P4 was significantly higher on days 6, 8, and 10 in follicles cultured in BMP-15-supplemented medium. The result for E2 tended toward significance on day 12. Intracellular reactive oxygen species levels were higher and glutathione levels were lower in mature oocytes from the in vitro culture than in mature oocytes from an in vivo control. A 3D culture system using an alginate matrix and supplemented with BMP-15 effectively improves the outcomes of in vitro ovarian follicle culture.
Collapse
Affiliation(s)
- Jakree Jitjumnong
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan
| | - Pin-Chi Tang
- Department of Animal Science, National Chung Hsing University, Taichung 40227, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
- Correspondence: ; Tel.: +886-4-2284-0365 (ext. 222); Fax: +886-4-2286-0265
| |
Collapse
|
3
|
Kankanam Gamage US, Hashimoto S, Miyamoto Y, Nakano T, Yamanaka M, Koike A, Satoh M, Morimoto Y. Mitochondria Transfer from Adipose Stem Cells Improves the Developmental Potential of Cryopreserved Oocytes. Biomolecules 2022; 12:biom12071008. [PMID: 35883564 PMCID: PMC9313289 DOI: 10.3390/biom12071008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
Although it is not a well-established technology, oocyte cryopreservation is becoming prevalent in assisted reproductive technologies in response to the growing demands of patients’ sociological and pathological conditions. Oocyte cryopreservation can adversely affect the developmental potential of oocytes by causing an increase in intracellular oxidative stresses and damage to the mitochondrial structure. In this study, we studied whether autologous adipose stem cell (ASC) mitochondria supplementation with vitrified and warmed oocytes could restore post-fertilization development that decreased due to mitochondrial damage following cryopreservation. ASC mitochondria showed similar morphology to oocytes’ mitochondria and had a higher ATP production capacity. The vitrified-warmed oocytes from juvenile mice were supplemented with ASC mitochondria at the same time as intracellular sperm injection (ICSI), after which we compared their developmental capacity and the mitochondria quality of 2-cell embryos. We found that, compared to their counterpart, mitochondria supplementation significantly improved development from 2-cell embryos to blastocysts (56.8% vs. 38.2%) and ATP production in 2-cell embryos (905.6 & 561.1 pmol), while reactive oxygen species levels were comparable. With these results, we propose that ASC mitochondria supplementation could restore the quality of cryopreserved oocytes and enhance the embryo developmental capacity, signifying another possible approach for mitochondrial transplantation therapy.
Collapse
Affiliation(s)
- Udayanga Sanath Kankanam Gamage
- HORAC Grand Front Osaka Clinic, Osaka 530-0011, Japan; (Y.M.); (A.K.)
- Correspondence: (U.S.K.G.); (S.H.); (Y.M.); Tel.: +81-90-9823-8477 (U.S.K.G.); +81-6-6645-2121 (S.H.); +81-6-6377-8824 (Y.M.)
| | - Shu Hashimoto
- Reproductive Science Institute, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
- Correspondence: (U.S.K.G.); (S.H.); (Y.M.); Tel.: +81-90-9823-8477 (U.S.K.G.); +81-6-6645-2121 (S.H.); +81-6-6377-8824 (Y.M.)
| | - Yuki Miyamoto
- HORAC Grand Front Osaka Clinic, Osaka 530-0011, Japan; (Y.M.); (A.K.)
| | - Tatsuya Nakano
- IVF Namba Clinic, Osaka 550-0015, Japan; (T.N.); (M.Y.); (M.S.)
| | - Masaya Yamanaka
- IVF Namba Clinic, Osaka 550-0015, Japan; (T.N.); (M.Y.); (M.S.)
| | - Akiko Koike
- HORAC Grand Front Osaka Clinic, Osaka 530-0011, Japan; (Y.M.); (A.K.)
| | - Manabu Satoh
- IVF Namba Clinic, Osaka 550-0015, Japan; (T.N.); (M.Y.); (M.S.)
| | - Yoshiharu Morimoto
- HORAC Grand Front Osaka Clinic, Osaka 530-0011, Japan; (Y.M.); (A.K.)
- Correspondence: (U.S.K.G.); (S.H.); (Y.M.); Tel.: +81-90-9823-8477 (U.S.K.G.); +81-6-6645-2121 (S.H.); +81-6-6377-8824 (Y.M.)
| |
Collapse
|
4
|
Rakha SI, Elmetwally MA, El-Sheikh Ali H, Balboula AZ, Mahmoud AM, Zaabel SM. Lycopene Reduces the In Vitro Aging Phenotypes of Mouse Oocytes by Improving Their Oxidative Status. Vet Sci 2022; 9:336. [PMID: 35878352 PMCID: PMC9324547 DOI: 10.3390/vetsci9070336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 01/24/2023] Open
Abstract
Postovulatory aging is a major problem that limits the success of many assisted reproductive technologies (ARTs). Oxidative stress is a leading cause of oocyte aging. This study investigated the effects of lycopene supplementation of in vitro maturation (IVM) medium during the aging of mouse oocytes on the oocytes' morphology and oxidative stress status. Mouse cumulus-oocyte complexes (COCs) were collected and cultured in the IVM medium either for 17 h, (freshly matured oocytes), or for 48 h, (in vitro-aged oocytes), with or without lycopene. The rate of fragmented and degenerated oocytes and the oocyte levels of hydrogen peroxide (H2O2), malondialdehyde (MDA), total antioxidant capacity (TAC), reduced glutathione (GSH), catalase (CAT), and superoxide dismutase (SOD) were estimated and compared. Oocytes aged with 200 nM lycopene revealed significantly less fragmentation and degeneration, lower H2O2 and MDA levels, and higher TAC, GSH and SOD levels than those aged without lycopene. CAT levels were unchanged by lycopene treatment. Taken together, our data showed beneficial effects of lycopene during in vitro aging of mouse oocytes by reducing the oxidative stress damages that lead to their apoptosis. The present study introduces lycopene as a natural supplement to reduce the postovulatory aging-dependent abnormalities of mammalian oocytes.
Collapse
Affiliation(s)
- Shimaa I. Rakha
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (S.I.R.); (M.A.E.); (H.E.-S.A.); (A.Z.B.); (A.M.M.)
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Mohammed A. Elmetwally
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (S.I.R.); (M.A.E.); (H.E.-S.A.); (A.Z.B.); (A.M.M.)
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Hossam El-Sheikh Ali
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (S.I.R.); (M.A.E.); (H.E.-S.A.); (A.Z.B.); (A.M.M.)
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed Zaky Balboula
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (S.I.R.); (M.A.E.); (H.E.-S.A.); (A.Z.B.); (A.M.M.)
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
- Animal Sciences Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Abdelmonem Montaser Mahmoud
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (S.I.R.); (M.A.E.); (H.E.-S.A.); (A.Z.B.); (A.M.M.)
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Samy M. Zaabel
- Department of Theriogenology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt; (S.I.R.); (M.A.E.); (H.E.-S.A.); (A.Z.B.); (A.M.M.)
- Reproductive Biotechnology Research Laboratory, College of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
5
|
He XH, Zhao M, Tian XY, Lu YJ, Yang SY, Peng QR, Yang M, Jiang WW. Redox-responsive nano-micelles containing trisulfide bonds to enhance photodynamic efficacy of zinc naphthalocyanine. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|