1
|
Zhao S, Wang Y, Zhang X, Qiao L, Wang S, Jin Y, Wu S, Li Y, Zhan P, Liu X. Discovery of carboxyl-containing heteroaryldihydropyrimidine derivatives as novel HBV capsid assembly modulators with significantly improved metabolic stability. RSC Med Chem 2023; 14:2380-2400. [PMID: 37974964 PMCID: PMC10650354 DOI: 10.1039/d3md00461a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 09/30/2023] [Indexed: 11/19/2023] Open
Abstract
Interfering with the assembly of hepatitis B virus (HBV) capsid is a promising approach for treating chronic hepatitis B (CHB). In order to enhance the metabolic stability and reduce the strong hERG inhibitory effect of HBV capsid assembly modulator (CAM) GLS4, we rationally designed a series of carboxyl-containing heteroaryldihydropyrimidine (HAP) derivatives based on structural biology information combined with medicinal chemistry strategies. The results from biological evaluation demonstrated that compound 6a-25 (EC50 = 0.020 μM) exhibited greater potency than the positive drug lamivudine (EC50 = 0.09 μM), and was comparable to the lead compound GLS4 (EC50 = 0.007 μM). Furthermore, it was observed that 6a-25 reduced levels of core protein (Cp) and capsid in cells. Preliminary assessment of drug-likeness revealed that 6a-25 exhibited superior water solubility (pH 2.0: 374.81 μg mL-1; pH 7.0: 6.85 μg mL-1; pH 7.4: 25.48 μg mL-1), liver microsomal metabolic stability (t1/2 = 108.2 min), and lower hERG toxicity (10 μM inhibition rate was 72.66%) compared to the lead compound GLS4. Overall, compound 6a-25 holds promise for further investigation.
Collapse
Affiliation(s)
- Shujie Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Ya Wang
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College 100050 Beijing PR China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Lijun Qiao
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College 100050 Beijing PR China
| | - Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Yu Jin
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Shuo Wu
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College 100050 Beijing PR China
| | - Yuhuan Li
- CAMS Key Laboratory of Antiviral Drug Research, Beijing Key Laboratory of Antimicrobial Agents, NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College 100050 Beijing PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University 44 West Culture Road 250012 Jinan Shandong PR China
| |
Collapse
|
2
|
Wen X, Irshad A, Jin H. The Battle for Survival: The Role of RNA Non-Canonical Tails in the Virus-Host Interaction. Metabolites 2023; 13:1009. [PMID: 37755289 PMCID: PMC10537345 DOI: 10.3390/metabo13091009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Terminal nucleotidyltransferases (TENTs) could generate a 'mixed tail' or 'U-rich tail' consisting of different nucleotides at the 3' end of RNA by non-templated nucleotide addition to protect or degrade cellular messenger RNA. Recently, there has been increasing evidence that the decoration of virus RNA terminus with a mixed tail or U-rich tail is a critical way to affect viral RNA stability in virus-infected cells. This paper first briefly introduces the cellular function of the TENT family and non-canonical tails, then comprehensively reviews their roles in virus invasion and antiviral immunity, as well as the significance of the TENT family in antiviral therapy. This review will contribute to understanding the role and mechanism of non-canonical RNA tailing in survival competition between the virus and host.
Collapse
Affiliation(s)
| | | | - Hua Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China; (X.W.); (A.I.)
| |
Collapse
|
3
|
Zhang L, Ge X, Jin H, Lu D, Chen S, Zhang Y, Wang X, Xu H, Ao W, Zhang Y. Discovery, optimization and biological evaluation of novel HBsAg production inhibitors. Eur J Med Chem 2023; 256:115387. [PMID: 37187088 DOI: 10.1016/j.ejmech.2023.115387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 05/17/2023]
Abstract
Hepatitis B virus (HBV) infection is a major global health problem. HBsAg inhibitors are expected to reduce the production of HBsAg via inhibiting host proteins PAPD5 & PAPD7 and finally achieve the ideal goal of "functional cure". In this work, a series of tetrahydropyridine (THP) derivatives with a bridged ring were synthesized and evaluated for their inhibiting HBsAg production and HBV DNA activity. Among them, compound 17i was identified as potent HBsAg production inhibitor with excellent in vitro anti-HBV potency (HBV DNA EC50 = 0.018 μM, HBsAg EC50 = 0.044 μM) and low toxicity (CC50 > 100 μM). Moreover, 17i exhibited favorable in vitro/in vivo DMPK properties in mice. 17i could also significantly reduce serum HBsAg and HBV DNA levels (1.08 and 1.04 log units, respectively) in HBV transgenic mice.
Collapse
Affiliation(s)
- Li Zhang
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Xingfeng Ge
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Hui Jin
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Dandan Lu
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Shuo Chen
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Yang Zhang
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Xiaojin Wang
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Hongjiang Xu
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China
| | - Wangwei Ao
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China.
| | - Yinsheng Zhang
- Pharmaceutical R&D Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd, 1099 Fuying Road, Jiangning District, Nanjing, Jiangsu Province, China.
| |
Collapse
|
4
|
Ji X, Jiang X, Kobayashi C, Ren Y, Hu L, Gao Z, Kang D, Jia R, Zhang X, Zhao S, Watashi K, Liu X, Zhan P. Design, Synthesis, and Evaluation of a Set of Carboxylic Acid and Phosphate Prodrugs Derived from HBV Capsid Protein Allosteric Modulator NVR 3-778. Molecules 2022; 27:molecules27185987. [PMID: 36144715 PMCID: PMC9505734 DOI: 10.3390/molecules27185987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/04/2022] [Accepted: 09/10/2022] [Indexed: 11/22/2022] Open
Abstract
Hepatitis B virus (HBV) capsid protein (Cp) is necessary for viral replication and the maintenance of viral persistence, having become an attractive target of anti-HBV drugs. To improve the water solubility of HBV capsid protein allosteric modulator (CpAM) NVR 3-778, a series of novel carboxylic acid and phosphate prodrugs were designed and synthesized using a prodrug strategy. In vitro HBV replication assay showed that these prodrugs maintained favorable antiviral potency (EC50 = 0.28−0.42 µM), which was comparable to that of NVR 3-778 (EC50 = 0.38 µM). More importantly, the cytotoxicity of prodrug N8 (CC50 > 256 µM) was significantly reduced compared to NVR 3-778 (CC50 = 13.65 ± 0.21 µM). In addition, the water solubility of prodrug N6 was hundreds of times better than that of NVR 3-778 in three phosphate buffers with various pH levels (2.0, 7.0, 7.4). In addition, N6 demonstrated excellent plasma and blood stability in vitro and good pharmacokinetic properties in rats. Finally, the hemisuccinate prodrug N6 significantly improved the candidate drug NVR 3-778’s water solubility and increased metabolic stability while maintaining its antiviral efficacy.
Collapse
Affiliation(s)
- Xiangkai Ji
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Xiangyi Jiang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Chisa Kobayashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 163-8001, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan
| | - Yujie Ren
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Lide Hu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Zhen Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Ruifang Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Xujie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Shujie Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo 163-8001, Japan
- Department of Applied Biological Science, Tokyo University of Science, Noda 278-8510, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo 163-8001, Japan
- Correspondence: (K.W.); (X.L.); (P.Z.)
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
- Correspondence: (K.W.); (X.L.); (P.Z.)
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Culture Road, Jinan 250012, China
- Correspondence: (K.W.); (X.L.); (P.Z.)
| |
Collapse
|
5
|
Huang Y, Liu N, Ning Q, Zhou M, Zang N, Liang T, Wei W. Design, synthesis, and biological evaluation of novel (E)-1-arylethan-1-one O-((3-arylisoxazol-5-yl) methyl) oxime derivatives as potent non-nucleoside HBV inhibitors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Li X, Zhang Z, Chen Y, Wang B, Yang G, Xu X, Yechao B, Bai D, Feng B, Mao Y, Feng J, Bai C, He F, Tao W. Discovery of SHR5133, a Highly Potent and Novel HBV Capsid Assembly Modulator. ACS Med Chem Lett 2022; 13:507-512. [PMID: 35300087 PMCID: PMC8919393 DOI: 10.1021/acsmedchemlett.2c00002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/15/2022] [Indexed: 11/29/2022] Open
Abstract
Capsid assembly modulators (CpAMs) represent a new class of antivirals targeting hepatitis B virus (HBV) core protein to disrupt the assembly process. In this work, a novel chemotype featuring a fused heterocycle amide was discovered through pharmacophore exploration. Lead optimization resulted in compound 8 with an EC50 value of 511 nM, and then methyl substitution on the piperazine was found to improve the in vitro potency remarkably. Further SAR studies established the key compound SHR5133, which showed high in vitro antiviral potency, favorable pharmacokinetic profiles across species, and robust in vivo efficacy.
Collapse
Affiliation(s)
- Xin Li
- Shanghai Hengrui Pharmaceutical Co., Ltd., R&D Center, 279 Wenjing Road, Shanghai 200245, China
| | - Zhigao Zhang
- Shanghai Hengrui Pharmaceutical Co., Ltd., R&D Center, 279 Wenjing Road, Shanghai 200245, China
| | - Yang Chen
- Shanghai Hengrui Pharmaceutical Co., Ltd., R&D Center, 279 Wenjing Road, Shanghai 200245, China
| | - Bin Wang
- Shanghai Hengrui Pharmaceutical Co., Ltd., R&D Center, 279 Wenjing Road, Shanghai 200245, China
| | - Guimei Yang
- Shanghai Hengrui Pharmaceutical Co., Ltd., R&D Center, 279 Wenjing Road, Shanghai 200245, China
| | - Xiangbin Xu
- Shanghai Hengrui Pharmaceutical Co., Ltd., R&D Center, 279 Wenjing Road, Shanghai 200245, China
| | - Baihui Yechao
- Shanghai Hengrui Pharmaceutical Co., Ltd., R&D Center, 279 Wenjing Road, Shanghai 200245, China
| | - Dongdong Bai
- Shanghai Hengrui Pharmaceutical Co., Ltd., R&D Center, 279 Wenjing Road, Shanghai 200245, China
| | - Binqiang Feng
- Shanghai Hengrui Pharmaceutical Co., Ltd., R&D Center, 279 Wenjing Road, Shanghai 200245, China
| | - Yuchang Mao
- Shanghai Hengrui Pharmaceutical Co., Ltd., R&D Center, 279 Wenjing Road, Shanghai 200245, China
| | - Jun Feng
- Shanghai Hengrui Pharmaceutical Co., Ltd., R&D Center, 279 Wenjing Road, Shanghai 200245, China
| | - Chang Bai
- Shanghai Hengrui Pharmaceutical Co., Ltd., R&D Center, 279 Wenjing Road, Shanghai 200245, China
| | - Feng He
- Shanghai Hengrui Pharmaceutical Co., Ltd., R&D Center, 279 Wenjing Road, Shanghai 200245, China
| | - Weikang Tao
- Shanghai Hengrui Pharmaceutical Co., Ltd., R&D Center, 279 Wenjing Road, Shanghai 200245, China
| |
Collapse
|
7
|
Li J, Kemper T, Broering R, Chen J, Yuan Z, Wang X, Lu M. Interferon Alpha Induces Cellular Autophagy and Modulates Hepatitis B Virus Replication. Front Cell Infect Microbiol 2022; 12:804011. [PMID: 35186790 PMCID: PMC8847603 DOI: 10.3389/fcimb.2022.804011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/10/2022] [Indexed: 12/19/2022] Open
Abstract
Hepatitis B virus (HBV) infection causes acute and chronic liver diseases, including severe hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). Interferon alpha 2a (IFNα-2a) is commonly used for treating chronic HBV infection. However, its efficacy remains relatively low. Yet, the immunological and molecular mechanisms for successful IFNα-2a treatment remain elusive. One issue is whether the application of increasing IFNα doses may modulate cellular processes and HBV replication in hepatic cells. In the present study, we focused on the interaction of IFNα signaling with other cellular signaling pathways and the consequence for HBV replication. The results showed that with the concentration of 6000 U/ml IFNα-2a treatment downregulated the activity of not only the Akt/mTOR signaling but also the AMPK signaling. Additionally, IFNα-2a treatment increased the formation of the autophagosomes by blocking autophagic degradation. Furthermore, IFNα-2a treatment inhibited the Akt/mTOR signaling and initiated autophagy under low and high glucose concentrations. In reverse, inhibition of autophagy using 3-methyladenine (3-MA) and glucose concentrations influenced the expression of IFNα-2a-induced ISG15 and IFITM1. Despite of ISGs induction, HBV replication and gene expression in HepG2.2.15 cells, a cell model with continuous HBV replication, were slightly increased at high doses of IFNα-2a. In conclusion, our study indicates that IFNα-2a treatment may interfere with multiple intracellular signaling pathways, facilitate autophagy initiation, and block autophagic degradation, thereby resulting in slightly enhanced HBV replication.
Collapse
Affiliation(s)
- Jia Li
- Insititute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thekla Kemper
- Insititute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ruth Broering
- Department of Gastroenterology, Hepatology and Transplant Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jieliang Chen
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xueyu Wang
- Insititute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- State Key Laboratory for Diagnostic and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Mengji Lu, ; Xueyu Wang,
| | - Mengji Lu
- Insititute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Mengji Lu, ; Xueyu Wang,
| |
Collapse
|
8
|
Abstract
Due to the lack of prophylactic vaccines and effective treatment strategies against numerous public health conditions, viral infections remain a serious threat to global public health and socioeconomic development. The current ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, against which there is no prophylactic vaccine or licensed antiviral agents, underscores the need to continuously identify novel/effective treatment strategies against these infectious agents. Plants and plant-derived compounds have immensely contributed to the fight against numerous health conditions by providing bioactives that possess potent antimicrobial attributes, including antiviral activities. One such plant that has gathered much interest, due to its multiple medicinal properties, is the Nigella sativa plant, a flowering plant belonging to the family Ranunculacea, which is native to various regions of the world. In this chapter, we discuss the antiviral activities of N. sativa against critical viral pathogens, focusing more on the SARS-CoV-2 virus, the etiologic agent of the current unparalleled coronavirus disease (COVID-19) pandemic.
Collapse
|
9
|
Dantsu Y, Zhang Y, Zhang W. Advances in Therapeutic L-Nucleosides and L-Nucleic Acids with Unusual Handedness. Genes (Basel) 2021; 13:46. [PMID: 35052385 PMCID: PMC8774879 DOI: 10.3390/genes13010046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/19/2022] Open
Abstract
Nucleic-acid-based small molecule and oligonucleotide therapies are attractive topics due to their potential for effective target of disease-related modules and specific control of disease gene expression. As the non-naturally occurring biomolecules, modified DNA/RNA nucleoside and oligonucleotide analogues composed of L-(deoxy)riboses, have been designed and applied as innovative therapeutics with superior plasma stability, weakened cytotoxicity, and inexistent immunogenicity. Although all the chiral centers in the backbone are mirror converted from the natural D-nucleic acids, L-nucleic acids are equipped with the same nucleobases (A, G, C and U or T), which are critical to maintain the programmability and form adaptable tertiary structures for target binding. The types of L-nucleic acid drugs are increasingly varied, from chemically modified nucleoside analogues that interact with pathogenic polymerases to nanoparticles containing hundreds of repeating L-nucleotides that circulate durably in vivo. This article mainly reviews three different aspects of L-nucleic acid therapies, including pharmacological L-nucleosides, Spiegelmers as specific target-binding aptamers, and L-nanostructures as effective drug-delivery devices.
Collapse
Affiliation(s)
- Yuliya Dantsu
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (Y.D.); (Y.Z.)
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (Y.D.); (Y.Z.)
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202, USA; (Y.D.); (Y.Z.)
- Melvin and Bren Simon Cancer Center, 535 Barnhill Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
10
|
Xu B, Tang B, Wei J. Role of STAT1 in the resistance of HBV to IFN-α. Exp Ther Med 2021; 21:550. [PMID: 33850522 PMCID: PMC8027746 DOI: 10.3892/etm.2021.9982] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
The objective of the present study was to explore the mechanism of hepatitis B virus (HBV) resistance to interferon (IFN), and the role of signal transducer and activator of transcription 1 (STAT1). HepG2.2.15 cells were stimulated with a long-term (6-24 weeks) low-dose interferon (IFN)α-2b (10-70 IU/ml), so as to construct and screen a HepG2.2.15 cell model resistant to IFNα-2b. The changes of STAT1 and other proteins in the JAK-STAT signaling pathway, before and after drug resistance, were compared. The phosphorylation of STAT1 in HepG2.2.15 cells resistant to IFNα-2b was significantly decreased, and the expression level of 2',5'-oligoadenylate synthetase 1 was downregulated. Decreased phosphorylation of STAT1 in the JAK-STAT signaling pathway a contributor to the development of resistance to IFN-α in HBV.
Collapse
Affiliation(s)
- Bingfa Xu
- Department of Pharmacy, The Third Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230061, P.R. China
| | - Bo Tang
- Department of Pharmacy, Huainan First People's Hospital, Huainan, Anhui 232007, P.R. China
| | - Jiajia Wei
- Department of Pharmacy, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| |
Collapse
|
11
|
Liu G, Ma X, Wang Z, Wakae K, Yuan Y, He Z, Yoshiyama H, Iizasa H, Zhang H, Matsuda M, Sugiyama R, Yuan Z, Muramatsu M, Li L. Adenosine deaminase acting on RNA-1 (ADAR1) inhibits hepatitis B virus (HBV) replication by enhancing microRNA-122 processing. J Biol Chem 2019; 294:14043-14054. [PMID: 31366735 DOI: 10.1074/jbc.ra119.007970] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 07/04/2019] [Indexed: 12/18/2022] Open
Abstract
Adenosine deaminases acting on RNA-1 (ADAR1) involves adenosine to inosine RNA editing and microRNA processing. ADAR1 is known to be involved in the replication of various viruses, including hepatitis C and D. However, the role of ADAR1 in hepatitis B virus (HBV) infection has not yet been elucidated. Here, for the first time, we demonstrated ADAR1 antiviral activity against HBV. ADAR1 has two splicing isoforms in human hepatocytes: constitutive p110 protein and interferon-α (IFN-α)-responsive p150 protein. We found that overexpression of ADAR1 decreased HBV RNA in an HBV culture model. A catalytic-site mutant ADAR1 also decreased HBV RNA levels, whereas another adenosine deaminases that act on the RNA (ADAR) family protein, ADAR2, did not. Moreover, the induction of ADAR1 by stimulation with IFN-α also reduced HBV RNA levels. Decreases in endogenous ADAR1 expression by knock-down or knock-out increased HBV RNA levels. A major hepatocyte-specific microRNA, miRNA-122, was found to be positively correlated with ADAR1 expression, and exogenous miRNA-122 decreased both HBV RNA and DNA, whereas, conversely, transfection with a miRNA-122 inhibitor increased them. The reduction of HBV RNA by ADAR1 expression was abrogated by p53 knock-down, suggesting the involvement of p53 in the ADAR1-mediated reduction of HBV RNA. This study demonstrated, for the first time, that ADAR1 plays an antiviral role against HBV infection by increasing the level of miRNA-122 in hepatocytes.
Collapse
Affiliation(s)
- Guangyan Liu
- College of Basic Medical Sciences, Shenyang Medical College, Shenyang 110034, China.,Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China.,Department of Molecular Genetics, Kanazawa University, Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa 920-8640, Japan
| | - Xiancai Ma
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zhe Wang
- Department of Molecular Genetics, Kanazawa University, Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa 920-8640, Japan.,Department of Medical Oncology, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China.,The Key Laboratory of Biomarker High Throughput Screening and Target Translation of Breast and Gastrointestinal Tumor, Dalian University, Dalian 116001, China
| | - Kousho Wakae
- Department of Molecular Genetics, Kanazawa University, Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa 920-8640, Japan
| | - Yaochang Yuan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Zhangping He
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Hironori Yoshiyama
- Department of Microbiology, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane 693-8501, Japan
| | - Hisashi Iizasa
- Department of Microbiology, Faculty of Medicine, Shimane University, 89-1 Enya, Izumo, Shimane 693-8501, Japan
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Mami Matsuda
- Department of Virology II, National Institute of Infectious Disease, Tokyo 164-8640, Japan
| | - Ryuichi Sugiyama
- Department of Virology II, National Institute of Infectious Disease, Tokyo 164-8640, Japan
| | - Zhiyu Yuan
- College of Basic Medical Sciences, Shenyang Medical College, Shenyang 110034, China
| | - Masamichi Muramatsu
- Department of Molecular Genetics, Kanazawa University, Graduate School of Medical Science, 13-1 Takara-machi, Kanazawa 920-8640, Japan .,Department of Virology II, National Institute of Infectious Disease, Tokyo 164-8640, Japan
| | - Linghua Li
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou 510060, China
| |
Collapse
|
12
|
Qian L, Fan H, Ju Y, Chen L, Li X, Ye X, Luo Y, Li C, Meng S. A peptide-based inhibitor of gp96 suppresses HBsAg expression and HBV replication by upregulation of p53. J Gen Virol 2019; 100:1241-1252. [PMID: 31204972 DOI: 10.1099/jgv.0.001289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In hepatitis B virus (HBV) infection, the virus produces redundant hepatitis B surface antigen (HBsAg) that plays a key role in driving T-cell tolerance and viral persistence. However, currently available anti-HBV agents have no direct effect on HBsAg transcription and protein expression. In this study, we designed a heat shock protein gp96 inhibitor p37 with the cell penetrating peptide PTD (protein transduction domain of trans-activator of transcription), which mediated p37 internalization into hepatocytes. PTD-p37 effectively suppressed HBsAg expression and viral replication both in vitro and in vivo. We further provide evidence that PTD-p37 suppressed HBV enhancer/promoter activity via p53 upregulation. Moreover, PTD-p37 had antiviral activity against a lamivudine-resistant HBV strain. Considering that suppression of HBsAg expression is a major goal for treatment of HBV infection, our results provide a basis for developing a new therapeutic approaches targeting host factors against viral expression.
Collapse
Affiliation(s)
- Liyuan Qian
- Beijing Key Laboratory of Environmental and Viral Oncology, College of life Science and Bio-Engineering, Beijing University of Technology, Beijing, PR China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Hongxia Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Ying Ju
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Lizhao Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Xin Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Xin Ye
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Yunjing Luo
- Beijing Key Laboratory of Environmental and Viral Oncology, College of life Science and Bio-Engineering, Beijing University of Technology, Beijing, PR China
| | - Changfei Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| | - Songdong Meng
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| |
Collapse
|
13
|
Li Z, Min Q, Huang H, Liu R, Zhu Y, Zhu Q. Design, synthesis and biological evaluation of seco-A-pentacyclic triterpenoids-3,4-lactone as potent non-nucleoside HBV inhibitors. Bioorg Med Chem Lett 2018; 28:1501-1506. [PMID: 29627260 DOI: 10.1016/j.bmcl.2018.03.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 02/08/2023]
Abstract
A series of seco-A-pentacyclic triterpenoids-3,4-lactone were synthesized and the anti-HBV activities were evaluated in vitro. Several compounds inhibited the secretion of HBV antigen and the replication of HBV DNA in micromolar level. Compounds D7 and D10, seco-A-oleanane-3,4-lactone, suppressed the HBeAg secretion with IC50 values of 0.14 μM and 0.86 μM respectively, and the inhibitory activities were also confirmed by detecting the fluorescence intensity of FITC-labeled monoclonal mouse HBeAg antibody via flow cytometry. Compounds D7 and D10 as well as B4, ring-A cleaved 3,30-dioic acid, also displayed remarkable inhibition on both HBV DNA replication at the concentration of 25 μM and HBV cccDNA (covalently closed circularDNA) replication with IC50 values of 33.5 μM, 32.7 μM and 12.3 μM respectively.
Collapse
Affiliation(s)
- Zhijian Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Qingxi Min
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, PR China
| | - Haoji Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Ruixuan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Yongyan Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China
| | - Quanhong Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangzhou 510515, PR China.
| |
Collapse
|
14
|
Catalytic multicomponent reaction between nitroalkanes, elemental sulfur, and oxiranes. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-2067-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
Li X, Zhou K, He H, Zhou Q, Sun Y, Hou L, Shen L, Wang X, Zhou Y, Gong Z, He S, Jin H, Gu Z, Zhao S, Zhang L, Sun C, Zheng S, Cheng Z, Zhu Y, Zhang M, Li J, Chen S. Design, Synthesis, and Evaluation of Tetrahydropyrrolo[1,2- c]pyrimidines as Capsid Assembly Inhibitors for HBV Treatment. ACS Med Chem Lett 2017; 8:969-974. [PMID: 28947946 PMCID: PMC5601373 DOI: 10.1021/acsmedchemlett.7b00288] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/24/2017] [Indexed: 02/08/2023] Open
Abstract
The discovery of novel tetrahydropyrrolo[1,2-c]pyrimidines derivatives from Bay41_4109 as hepatitis B virus (HBV) inhibitors is herein reported. The structure-activity relationship optimization led to one highly efficacious compound 28a (IC50 = 10 nM) with good PK profiles and the favorite L/P ratio. The hydrodynamic injection model in mice clearly demonstrated the efficacy of 28a against HBV replication.
Collapse
Affiliation(s)
- Xiaolin Li
- WuXi
AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Kai Zhou
- WuXi
AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Haiying He
- WuXi
AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Qiong Zhou
- WuXi
AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Ya Sun
- WuXi
AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Lijuan Hou
- WuXi
AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Liang Shen
- WuXi
AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Xiaofei Wang
- WuXi
AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Yuedong Zhou
- WuXi
AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Zhen Gong
- WuXi
AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Shibo He
- WuXi
AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Huangtao Jin
- WuXi
AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Zhengxian Gu
- WuXi
AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Shuyong Zhao
- Shandong
Provincial Key Laboratory of Small Molecular Targeted Drugs, Qilu Pharmaceutical Co., Ltd., No. 243 Gong Ye Bei Road, Jinan, Shandong Province 250100, P. R. China
| | - Long Zhang
- Shandong
Provincial Key Laboratory of Small Molecular Targeted Drugs, Qilu Pharmaceutical Co., Ltd., No. 243 Gong Ye Bei Road, Jinan, Shandong Province 250100, P. R. China
| | - Chunyan Sun
- Shandong
Provincial Key Laboratory of Small Molecular Targeted Drugs, Qilu Pharmaceutical Co., Ltd., No. 243 Gong Ye Bei Road, Jinan, Shandong Province 250100, P. R. China
| | - Shansong Zheng
- Shandong
Provincial Key Laboratory of Small Molecular Targeted Drugs, Qilu Pharmaceutical Co., Ltd., No. 243 Gong Ye Bei Road, Jinan, Shandong Province 250100, P. R. China
| | - Zhe Cheng
- Shandong
Provincial Key Laboratory of Small Molecular Targeted Drugs, Qilu Pharmaceutical Co., Ltd., No. 243 Gong Ye Bei Road, Jinan, Shandong Province 250100, P. R. China
| | - Yidong Zhu
- Shandong
Provincial Key Laboratory of Small Molecular Targeted Drugs, Qilu Pharmaceutical Co., Ltd., No. 243 Gong Ye Bei Road, Jinan, Shandong Province 250100, P. R. China
| | - Minghui Zhang
- Shandong
Provincial Key Laboratory of Small Molecular Targeted Drugs, Qilu Pharmaceutical Co., Ltd., No. 243 Gong Ye Bei Road, Jinan, Shandong Province 250100, P. R. China
| | - Jian Li
- WuXi
AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| | - Shuhui Chen
- WuXi
AppTec (Shanghai) Co., Ltd., 288 FuTe Zhong Road, Shanghai 200131, P. R. China
| |
Collapse
|
16
|
Design, synthesis and primary biological evaluation of the novel 2-pyridone derivatives as potent non-nucleoside HBV inhibitors. Eur J Med Chem 2017; 136:144-153. [DOI: 10.1016/j.ejmech.2017.04.048] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/16/2017] [Accepted: 04/20/2017] [Indexed: 02/06/2023]
|
17
|
Different antiviral effects of IFNα subtypes in a mouse model of HBV infection. Sci Rep 2017; 7:334. [PMID: 28336921 PMCID: PMC5428457 DOI: 10.1038/s41598-017-00469-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/27/2017] [Indexed: 01/05/2023] Open
Abstract
Interferon alpha (IFNα) is commonly used for the treatment of chronic hepatitis B (CHB) patients. There are 13 different IFNα subtypes in humans, but only the subtype IFNα2 is used for clinical treatment. The antiviral activities of all other IFNα subtypes against HBV have not been studied. To obtain basic knowledge about the direct antiviral as well as the immunomodulatory effects of IFNα subtypes, we used the HBV hydrodynamic injection (HI) mouse model. Application of most IFNα subtype proteins inhibited HBV replication in vivo, with IFNα4 and IFNα5 being the most effective subtypes. Decreased viral loads after therapeutic application of IFNα4 and IFNα5 correlated with expanded effector cell populations of NK cells and T cells in both liver and spleen. Hydrodynamic injection of plasmids encoding for the effective IFNα subtypes (pIFNα) was even more potent against HBV than injecting IFNα proteins. The combination of pIFNα4 and pIFNα5 showed a synergistic antiviral effect on HBV replication, with a strong increase in NK cell and T cell activity. The results demonstrate distinct anti-HBV effects of different IFNα subtypes against HBV in the mouse model, which may be relevant for new therapeutic approaches.
Collapse
|
18
|
Affiliation(s)
- Devender Mandala
- Nelson Mandela Metropolitan University; University Way Port Elizabeth 6031 South Africa
| | - Paul Watts
- Nelson Mandela Metropolitan University; University Way Port Elizabeth 6031 South Africa
| |
Collapse
|
19
|
Jia H, Bai F, Liu N, Liang X, Zhan P, Ma C, Jiang X, Liu X. Design, synthesis and evaluation of pyrazole derivatives as non-nucleoside hepatitis B virus inhibitors. Eur J Med Chem 2016; 123:202-210. [PMID: 27484509 DOI: 10.1016/j.ejmech.2016.07.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 12/26/2022]
Abstract
In continuation of our efforts toward the discovery of potent non-nucleoside hepatitis B virus (HBV) inhibitors with novel structures, we have employed bioisosterism and hybrid pharmacophore-based strategy to explore the chemically diverse space of bioactive compounds. In this article, the original thiazole platform was replaced with pyrazole scaffold to yield the optimal pharmacophore moieties in order to generate novel non-nucleoside HBV inhibitors with desirable potency. Some of the new compounds were able to inhibit HBV activity in the low micromolar range. In particular, compound 6a3 displayed the most potent activity against the secretion of HBsAg and HBeAg with IC50 of 24.33 μM and 2.22 μM, respectively. The preliminary structure-activity relationship (SAR) of this new series of compounds was investigated, which may help designing more potent molecules.
Collapse
Affiliation(s)
- Haiyong Jia
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Fuxiang Bai
- Department of Immunology, Key Laboratory for Experimental, Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, Shandong University School of Medicine, Jinan, 250012, Shandong Province, PR China
| | - Na Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Xiaohong Liang
- Department of Immunology, Key Laboratory for Experimental, Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, Shandong University School of Medicine, Jinan, 250012, Shandong Province, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China
| | - Chunhong Ma
- Department of Immunology, Key Laboratory for Experimental, Teratology of Ministry of Education, Shandong Provincial Key Laboratory of Infection and Immunology, Shandong University School of Medicine, Jinan, 250012, Shandong Province, PR China
| | - Xuemei Jiang
- Department of Hepatic Diseases, Jinan Infectious Disease Hospital, Jingshi Road, 173, 250021, Jinan, Shandong, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
20
|
Recent advance of the hepatitis B virus inhibitors: a medicinal chemistry overview. Future Med Chem 2016; 7:587-607. [PMID: 25921400 DOI: 10.4155/fmc.15.19] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B Virus (HBV) is one of the most prevalent viral infections of human worldwide. The therapies are limited in the clinical context because of negative side effects of interferons and the development of viral resistance to the nucleoside/nucleotide inhibitors. In this review, we summarize the recent advances in design and development of potent anti-HBV inhibitors from natural sources and synthetic compounds, targeting different steps in the life cycle of HBV. We attempt to emphasize the major structural modifications, mechanisms of action and computer-aided docking analysis of novel potent inhibitors that need to be addressed in the future to design potent anti-HBV molecules.
Collapse
|
21
|
Lv JJ, Wang YF, Zhang JM, Yu S, Wang D, Zhu HT, Cheng RR, Yang CR, Xu M, Zhang YJ. Anti-hepatitis B virus activities and absolute configurations of sesquiterpenoid glycosides from Phyllanthus emblica. Org Biomol Chem 2015; 12:8764-74. [PMID: 25268491 DOI: 10.1039/c4ob01196a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
During the process exploring anti-viral compounds from Phyllanthus species, eight new highly oxygenated bisabolane sesquiterpenoid glycoside phyllaemblicins G1–G8 (1–8) were isolated from Phyllanthus emblica, along with three known compounds, phyllaemblicin F (9), phyllaemblic acid (10) and glochicoccin D (11). Phyllaemblicin G2 (2), bearing a tricyclo [3.1.1.1] oxygen bridge ring system, is an unusual sesquiterpenoid glycoside, while phyllaemblicins G6–G8 (6–8) are dimeric sesquiterpenoid glycosides with two norbisabolane units connecting through a disaccharide. All the structures were elucidated by the extensive analysis of HRMS and NMR data. The relative configuration of phyllaemblicin G2 was constructed based on heteronuclear coupling constants measurement, and the absolute configurations for all new compounds were established by calculated electronic circular dichroism (ECD) using time dependent density functional theory. The sesquiterpenoid glycoside dimers 6–9 displayed potential anti-hepatitis B virus (HBV) activities, especially for the new compound 6 with IC50 of 8.53 ± 0.97 and 5.68 ± 1.75 μM towards the HBV surface antigen (HBsAg) and HBV excreted antigen (HBeAg) secretion, respectively.
Collapse
Affiliation(s)
- Jun-Jiang Lv
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Caso MF, D’Alonzo D, D’Errico S, Palumbo G, Guaragna A. Highly Stereoselective Synthesis of Lamivudine (3TC) and Emtricitabine (FTC) by a Novel N-Glycosidation Procedure. Org Lett 2015; 17:2626-9. [DOI: 10.1021/acs.orglett.5b00982] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Maria Federica Caso
- Dipartimento
di Scienze Chimiche, Università degli Studi di Napoli Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Daniele D’Alonzo
- Dipartimento
di Scienze Chimiche, Università degli Studi di Napoli Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Stefano D’Errico
- Dipartimento
di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Giovanni Palumbo
- Dipartimento
di Scienze Chimiche, Università degli Studi di Napoli Federico II, Via Cintia 21, 80126 Napoli, Italy
| | - Annalisa Guaragna
- Dipartimento
di Scienze Chimiche, Università degli Studi di Napoli Federico II, Via Cintia 21, 80126 Napoli, Italy
| |
Collapse
|
23
|
Peng XH, Ren XN, Chen LX, Shi BS, Xu CH, Fang Z, Liu X, Chen JL, Zhang XN, Hu YW, Zhou XH. High persistence rate of hepatitis B virus in a hydrodynamic injection-based transfection model in C3H/HeN mice. World J Gastroenterol 2015; 21:3527-3536. [PMID: 25834317 PMCID: PMC4375574 DOI: 10.3748/wjg.v21.i12.3527] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/15/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023] Open
Abstract
AIM: To optimize the viral persistence rate in a hydrodynamic injection (HI) based hepatitis B virus (HBV) transfection mouse model.
METHODS: (1) 5-6-wk-old male C3H/HeN and C57BL/6 mice were hydrodynamically injected with 10 μg endotoxin-free pAAV/HBV1.2 plasmid DNA via the tail vein. Hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg) and HBV DNA, both in the serum and liver, were detected at different time points post HI by ELISA, immunohistochemical staining or quantitative polymerase chain reaction (PCR); (2) male C3H/HeN and C57BL/6 mice, either hydrodynamically injected mice at 10 wk post HI or naïve mice, were all immunized subcutaneously with 5 μg HBsAg formulated in complete Freund’s adjuvant three times at a 2-wk interval. Two weeks after the final immunization, splenocytes were isolated for T cell function analysis by ELISPOT assay; and (3) five weeks post HI, C3H/HeN mice were intragastrically administered 0.1 mg/kg entecavir once a day for 14 d, or were intraperitoneally injected with 1 mg/kg interferon (IFN)-α twice a week for 2 wk, or were treated with PBS as controls. The sera were collected and assayed for HBV DNA on days 0, 7 and 14 after drug treatment.
RESULTS: (1) Approximately 90% (22/25) of the injected C3H/HeN mice were still HBsAg-positive at 46 wk post HI, whereas HBsAg in C57BL/6 mice were completely cleared at 24 wk. Serum levels of HBeAg in C3H/HeN mice were higher than those in C57BL/6 mice from 4 wk to 46 wk. HBV DNA levels in the hydrodynamically injected C3H/HeN mice were higher than those in the C57BL/6 mice, both in the serum (from 4 wk to 46 wk) and in the liver (detected at 8 wk and 46 wk post HI). Histology showed that hepatitis B core antigen and HBsAg were expressed longer in the liver of C3H/HeN mice than in C57BL/6; (2) HBsAg specific T cell responses after HBsAg vaccination in hydrodynamically injected C3H/HeN and C57BL/6 mice, or naive control mice were detected by ELISPOT assay. After stimulation with HBsAg, the frequencies of IFN-γ producing splenocytes in the hydrodynamically injected C3H/HeN mice were significantly lower than those in hydrodynamically injected C57BL/6 mice, control C3H/HeN and control C57BL/6 mice, which were 0, 17 ± 7, 18 ± 10, and 41 ± 10 SFCs/106 splenocytes, respectively, and the mean spot sizes showed the same pattern. Even just stimulated with PMA and ionomysin, T-cell responses elicited in the vaccinated control C3H/HeN were much higher than those in hydrodynamically injected C3H/HeN mice; and (3) For drug treatment experiments on the hydrodynamically injected C3H/HeN mice, serum HBV DNA levels in the entecavir treatment group declined (131.2 folds, P < 0.01) on day 7 after treatment and kept going down. In the group of IFN-α treatment, serum HBV DNA levels declined to a lowest point (6.42 folds, P < 0.05) on 7 d after treatment and then rebounded.
CONCLUSION: We have developed a novel HI-based HBV transfection model using C3H/HeN mice, which had a higher HBV persistence rate than the classic C57BL/6 mouse model.
Collapse
|
24
|
Felis-Giemza A, Olesińska M, Świerkocka K, Więsik-Szewczyk E, Haładyj E. Treatment of rheumatic diseases and hepatitis B virus coinfection. Rheumatol Int 2015; 35:385-92. [PMID: 25549599 PMCID: PMC4335127 DOI: 10.1007/s00296-014-3195-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/17/2014] [Indexed: 12/26/2022]
Abstract
We often encounter rheumatological patients coinfected with hepatitis B in daily practice. In this paper, we will discuss the basic characteristics of the virus of hepatitis B, course of infection, the safety of rituximab, tocilizumab, abatacept treatment and therapeutic recommendations in management of patients with rheumatic diseases.
Collapse
Affiliation(s)
- Anna Felis-Giemza
- Institute of Rheumatology, Connective Tissue Department, 1 Spartanska Street, Warsaw, Poland
| | - Marzena Olesińska
- Institute of Rheumatology, Connective Tissue Department, 1 Spartanska Street, Warsaw, Poland
| | - Katarzyna Świerkocka
- Institute of Rheumatology, Connective Tissue Department, 1 Spartanska Street, Warsaw, Poland
| | - Ewa Więsik-Szewczyk
- Institute of Rheumatology, Connective Tissue Department, 1 Spartanska Street, Warsaw, Poland
| | - Ewa Haładyj
- Institute of Rheumatology, Connective Tissue Department, 1 Spartanska Street, Warsaw, Poland
| |
Collapse
|
25
|
Bing Y, Zhu S, Yu G, Li T, Liu W, Li C, Wang Y, Qi H, Guo T, Yuan Y, He Y, Liu Z, Liu Q. Glucocorticoid-induced S-adenosylmethionine enhances the interferon signaling pathway by restoring STAT1 protein methylation in hepatitis B virus-infected cells. J Biol Chem 2014; 289:32639-55. [PMID: 25271158 DOI: 10.1074/jbc.m114.589689] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Patients with chronic hepatitis B usually exhibit a low response to treatment with interferon α (IFN-α). An alternative approach to increase the response rate of IFN-α might be to immunologically stimulate the host with glucocorticoids (GCs) before treatment with IFN-α, but the underlying mechanism remains unclear. We hypothesized that the GCs enhance IFN signaling by inducing S-adenosylmethionine (AdoMet) when hepatitis B virus (HBV) replication was effectively suppressed by IFN-α. Here, we investigated the effect of GCs and IFN-α on AdoMet production and methionine adenosyltransferase 1A (MAT1A) expression in vitro. Furthermore, we determined whether post-transcriptional regulation is involved in HBV-repressed MAT1A expression and AdoMet production induced by dexamethasone (Dex). We found that AdoMet homeostasis was disrupted by Dex and that Dex directly regulated MAT1A expression by enhancing the binding of the glucocorticoid receptor (GR) to the glucocorticoid-response element (GRE) of the MAT1A promoter. HBV reduced AdoMet production by increasing methylation at GRE sites within the MAT1A promoter. The X protein of hepatitis B virus led to hypermethylation in the MAT1A promoter by recruiting DNA methyltransferase 1, and it inhibited GR binding to the GRE in the MAT1A promoter. Dex could increase an antiviral effect by inducing AdoMet production via a positive feedback loop when HBV is effectively suppressed by IFN-α, and the mechanism that involves Dex-induced AdoMet could increase STAT1 methylation rather than STAT1 phosphorylation. These findings provide a possible mechanism by which GC-induced AdoMet enhances the antiviral activity of IFN-α by restoring STAT1 methylation in HBV-infected cells.
Collapse
Affiliation(s)
- Yuntao Bing
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Siying Zhu
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Guozheng Yu
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ting Li
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Weijun Liu
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Changsheng Li
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yitao Wang
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Haolong Qi
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tao Guo
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yufeng Yuan
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yueming He
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhisu Liu
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Quanyan Liu
- From the Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
26
|
Structurally similar woodchuck and human hepadnavirus core proteins have distinctly different temperature dependences of assembly. J Virol 2014; 88:14105-15. [PMID: 25253350 DOI: 10.1128/jvi.01840-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Woodchuck hepatitis virus (WHV), a close relative of human hepatitis B virus (HBV), has been a key model for disease progression and clinical studies. Sequences of the assembly domain of WHV and HBV core proteins (wCp149 and hCp149, respectively) have 65% identity, suggesting similar assembly behaviors. We report a cryo-electron microscopy (cryo-EM) structure of the WHV capsid at nanometer resolution and characterization of wCp149 assembly. At this resolution, the T=4 capsid structures of WHV and HBV are practically identical. In contrast to their structural similarity, wCp149 demonstrates enhanced assembly kinetics and stronger dimer-dimer interactions than hCp149: at 23 °C and at 100 mM ionic strength, the pseudocritical concentrations of assembly of wCp149 and hCp149 are 1.8 μM and 43.3 μM, respectively. Transmission electron microscopy reveals that wCp149 assembles into predominantly T=4 capsids with a sizeable population of larger, nonicosahedral structures. Charge detection mass spectrometry indicates that T=3 particles are extremely rare compared to the ∼ 5% observed in hCp149 reactions. Unlike hCp149, wCp149 capsid assembly is favorable over a temperature range of 4 °C to 37 °C; van't Hoff analyses relate the differences in temperature dependence to the high positive values for heat capacity, enthalpy, and entropy of wCp149 assembly. Because the final capsids are so similar, these findings suggest that free wCp149 and hCp149 undergo different structural transitions leading to assembly. The difference in the temperature dependence of wCp149 assembly may be related to the temperature range of its hibernating host. IMPORTANCE In this paper, we present a cryo-EM structure of a WHV capsid showing its similarity to HBV. We then observe that the assembly properties of the two homologous proteins are very different. Unlike human HBV, the capsid protein of WHV has evolved to function in a nonhomeostatic environment. These studies yield insight into the interplay between core protein self-assembly and the host environment, which may be particularly relevant to plant viruses and viruses with zoonotic cycles involving insect vectors.
Collapse
|
27
|
Ma L, Alla NR, Li X, Mynbaev OA, Shi Z. Mother-to-child transmission of HBV: review of current clinical management and prevention strategies. Rev Med Virol 2014; 24:396-406. [DOI: 10.1002/rmv.1801] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 05/25/2014] [Accepted: 05/26/2014] [Indexed: 12/14/2022]
Affiliation(s)
- Lin Ma
- Department of Obstetrics and Gynecology; Third Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Nageswara R. Alla
- Department of Pulmonary, Allergy and Critical Care Medicine; University of Pittsburgh; Pittsburgh PA USA
| | - Xiaomao Li
- Department of Obstetrics and Gynecology; Third Affiliated Hospital of Sun Yat-sen University; Guangzhou China
| | - Ospan A. Mynbaev
- Department of ObGyn and Reproductive Medicine, Moscow State University of Medicine & Dentistry; Peoples' Friendship University of Russia; Moscow Russia
- The International Translational Medicine and Biomodeling Research Team, MIPT center for human physiology studies; The Department of Applied Mathematics, Moscow Institute of Physics and Technology (State University); Dolgoprudny Moscow Region Russia
- Laboratory of Pilot Projects; Moscow State University of Medicine & Dentistry; Moscow Russia
| | - Zhongjie Shi
- Department of Obstetrics and Gynecology; Third Affiliated Hospital of Sun Yat-sen University; Guangzhou China
- Department of Microbiology & Immunology; Thomas Jefferson University; Philadelphia PA USA
| |
Collapse
|
28
|
Diao H, He J, Zheng Q, Chen J, Cui G, Wei Y, Ye P, Kohanawa M, Li L. A possible role for NKT-like cells in patients with chronic hepatitis B during telbivudine treatment. Immunol Lett 2014; 160:65-71. [PMID: 24718278 DOI: 10.1016/j.imlet.2014.03.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/21/2014] [Accepted: 03/28/2014] [Indexed: 12/23/2022]
Abstract
Natural killer T-like (NKT-like) cells are a source of different pro-inflammatory cytokines and therefore may be involved in inflammatory processes. However, little is known about NKT-like cells during antiviral therapy. In this study, we observed significantly higher numbers of CD3(+)CD56(+) cells in patients with chronic hepatitis B (CHB) than healthy controls. Importantly, CD3(+)CD56(+) NKT-like cells markedly decreased during telbivudine treatment in patients with CHB, and a positive correlation between NKT-like cell frequency and the serum HBV DNA level was observed during early antiviral therapy. Interestingly, NKT-like cell frequency significantly reduced in well-responders at week 12 of telbivudine therapy compared to baseline, but did not significantly change in non-responders after treatment. Previous studies have shown that interleukin (IL)-17 plays a role in the pathogenesis of CHB. Serum IL-17 levels reduced significantly during early antiviral therapy, however, interferon (IFN)-γ, IL-6 and tumor necrosis factor (TNF)-α levels did not change significantly. A positive correlation was observed between the NKT-like cell frequency and serum IL-17 level in CHB patients, and NKT-like cells isolated from patients with CHB secreted substantial amounts of IL-17 in vitro. These results suggest that the NKT-like cell frequency may be one of useful immunologic marker for evaluating the efficacy of anti-HBV therapy, and that NKT-like cells are also an important source of IL-17 (in addition to conventional T cells) in patients with CHB.
Collapse
Affiliation(s)
- Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| | - Jianqin He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Qishi Zheng
- The College of Education, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Jianing Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Guangying Cui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yingfeng Wei
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ping Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Masashi Kohanawa
- Department of Microbiology, School of Medicine, Hokkaido University, Sapporo 0600815, Japan
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| |
Collapse
|
29
|
Song J, Zhou Y, Li S, Wang B, Zheng X, Wu J, Gibbert K, Dittmer U, Lu M, Yang D. Susceptibility of different hepatitis B virus isolates to interferon-alpha in a mouse model based on hydrodynamic injection. PLoS One 2014; 9:e90977. [PMID: 24618716 PMCID: PMC3950299 DOI: 10.1371/journal.pone.0090977] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/05/2014] [Indexed: 12/13/2022] Open
Abstract
Interferon alpha (IFN-α) is commonly used for the treatment of chronic hepatitis B (CHB) patients. Many factors including viral genetics may determine the outcome of IFN-α therapy. In this study, we tested whether the expression of IFN-α directly in the liver inhibits HBV gene expression and replication using a HBV hydrodynamic injection (HI) mouse model. Two replication-competent clones from different HBV isolates that belonging to HBV genotype A and B based on a pAAV vector (pAAV-HBV-A and pAAV-HBV-B) were compared for their susceptibility to IFN-α. HBV clones were injected into mice either alone or in combination with a murine (m) IFN-α expression plasmid (pmIFN-α). HBsAg and HBeAg concentrations and HBV DNA levels in mice differed after injection of these two HBV clones. Co-application of pmIFN-α together with the two distinct isolates resulted in markedly different kinetics of decline of HBsAg, HBeAg, and HBV DNA levels in the mice. Immunohistochemical staining of liver sections with anti-HBc showed that mIFN-α application completely inhibited the expression of HBcAg in mice inoculated with pAAV-HBV-B, whereas the expression of HBcAg was only reduced in mice with pAAV-HBV-A. Consistently, mice injected with pAAV-HBV-B and pmIFN-α showed higher expression levels of the IFN-stimulated genes (ISGs) ISG15, OAS, PKR as well as proinflammatory cytokine IL-6 in the liver. In addition, expression levels of anti-inflammatory cytokine IL-10 was down-regulated significantly in liver of the mice injected with pAAV-HBV-B and pmIFN-α. Our data demonstrate that IFN-α exerts antiviral activity in HBV mouse model, but different HBV isolates may have diverse susceptibility to IFN-α.
Collapse
Affiliation(s)
- Jingjiao Song
- Division of Clinical Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yun Zhou
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Sheng Li
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Baoju Wang
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Jun Wu
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Kathrin Gibbert
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
30
|
Qiu LP, Chen L, Chen KP. Antihepatitis B therapy: a review of current medications and novel small molecule inhibitors. Fundam Clin Pharmacol 2013; 28:364-81. [DOI: 10.1111/fcp.12053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 09/14/2013] [Accepted: 09/30/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Li-Peng Qiu
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu Province 212013 China
| | - Liang Chen
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu Province 212013 China
| | - Ke-Ping Chen
- Institute of Life Sciences; Jiangsu University; Zhenjiang Jiangsu Province 212013 China
| |
Collapse
|
31
|
Synthesis and anti-HBV activity of novel 3'-N-phenylsulfonyl docetaxel analogs. Molecules 2013; 18:10189-212. [PMID: 23973993 PMCID: PMC6270178 DOI: 10.3390/molecules180910189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/15/2013] [Accepted: 08/17/2013] [Indexed: 01/17/2023] Open
Abstract
Nine new 3′-N-phenylsulfonyl docetaxel analogs were synthesized in good yields from the key intermediate N-phenylsulfonyl oxazolidine via a six-step route. These analogs were tested for anti-hepatitis B virus (HBV) activity in vitro. Compounds 3e, 3g and 3j showed more potent inhibitory activity against HBeAg secretion than the positive control lamivudine. Further extensive SAR and mechanistic studies will be reported in due course.
Collapse
|
32
|
Zhao Y, Gou XJ, Dai JY, Peng JH, Feng Q, Sun SJ, Cao HJ, Zheng NN, Fang JW, Jiang J, Su SB, Liu P, Hu YY, Zhang YY. Differences in metabolites of different tongue coatings in patients with chronic hepatitis B. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:204908. [PMID: 23690837 PMCID: PMC3652181 DOI: 10.1155/2013/204908] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 03/22/2013] [Accepted: 03/27/2013] [Indexed: 12/15/2022]
Abstract
Tongue coating is one of the important foundations of tongue diagnosis in traditional Chinese medicine (TCM) and plays an important role in reflecting the occurrence, development, and prognosis of the disease. However, its material basis is still poorly understood. In this study, a urinary metabonomic method based on gas chromatography coupled to mass spectrometry (GC/MS) was developed. The distinct clustering in metabolic profile was observed from Group A (thick yellow coating in patients with chronic hepatitis B), Group B (thick white coating in patients with chronic hepatitis B), and Group C (thin white coating with healthy humans) using orthogonal projections to latent structures (OPLS). Based on the variable of importance in the project (VIP) values, some significantly changed metabolites have been identified. These changes were related to the disturbance in energy metabolism, amino acid metabolism, nucleotide metabolism, and gut microflora, which were helpful to understand the material basis leading to the formation of tongue coating. This study demonstrated that tongue coating may have an objective material basis.
Collapse
Affiliation(s)
- Yu Zhao
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 258 Zhangheng Road, Pudong District, Shanghai 201203, China
| | - Xiao-jun Gou
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 258 Zhangheng Road, Pudong District, Shanghai 201203, China
| | - Jian-ye Dai
- Center for Traditional Chinese Medicine and Systems Biology of Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai 201203, China
| | - Jing-hua Peng
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 258 Zhangheng Road, Pudong District, Shanghai 201203, China
| | - Qin Feng
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 258 Zhangheng Road, Pudong District, Shanghai 201203, China
| | - Shu-jun Sun
- Center for Traditional Chinese Medicine and Systems Biology of Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai 201203, China
| | - Hui-juan Cao
- Center for Traditional Chinese Medicine and Systems Biology of Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai 201203, China
| | - Ning-ning Zheng
- Center for Traditional Chinese Medicine and Systems Biology of Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai 201203, China
| | - Jun-wei Fang
- Center for Traditional Chinese Medicine and Systems Biology of Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai 201203, China
| | - Jian Jiang
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 258 Zhangheng Road, Pudong District, Shanghai 201203, China
| | - Shi-bing Su
- E-Institute of Shanghai Municipal Education Commission, Shanghai 201203, China
| | - Ping Liu
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 258 Zhangheng Road, Pudong District, Shanghai 201203, China
- E-Institute of Shanghai Municipal Education Commission, Shanghai 201203, China
| | - Yi-yang Hu
- Institute of Liver Disease, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 258 Zhangheng Road, Pudong District, Shanghai 201203, China
- E-Institute of Shanghai Municipal Education Commission, Shanghai 201203, China
| | - Yong-yu Zhang
- Center for Traditional Chinese Medicine and Systems Biology of Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong District, Shanghai 201203, China
| |
Collapse
|
33
|
Qiu LP, Chen KP. Anti-HBV agents derived from botanical origin. Fitoterapia 2012; 84:140-57. [PMID: 23164603 DOI: 10.1016/j.fitote.2012.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Revised: 10/29/2012] [Accepted: 11/04/2012] [Indexed: 01/16/2023]
Abstract
There are 350,000 hepatitis B virus (HBV) carriers all over the world. Chronic HBV infection is at a high risk of developing liver cirrhosis and hepatocelluar carcinoma (HCC), and heavily threatened people's health. Two kinds of drugs approved by FDA for anti-HBV therapy are immunomodulators (interferon α, pegylated-interferon α) and nucleos(t)ide analogues (lamivudine, adefovir dipivoxil, entecavir, telbivudine, and tenofovir disoproxil fumarate). These drugs have been proved to be far from being satisfactory due to their low specificity, side effects, and high rate of drug resistance. There is an urgent need to discover and develop novel effective anti-HBV drugs. With vast resources, various structures, diverse biological activities and action mechanisms, as well as abundant clinical experiences, botanical agents become a promising source of finding new anti-HBV drugs. This review summarizes the recent research and development of anti-HBV agents derived from botanical origin on their sources and active components, inhibitory effects and possible toxicities, as well as action targets and mechanisms, and also addresses the advantages and the existing shortcomings in the development of botanical inhibitors. This information may not only broaden the knowledge of anti-HBV therapy, and offer possible alternative or substitutive drugs for CHB patients, but also provides considerable information for developing new safe and effective anti-HBV drugs.
Collapse
Affiliation(s)
- Li-Peng Qiu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | | |
Collapse
|
34
|
Wang S, Qiu L, Yan X, Jin W, Wang Y, Chen L, Wu E, Ye X, Gao GF, Wang F, Chen Y, Duan Z, Meng S. Loss of microRNA 122 expression in patients with hepatitis B enhances hepatitis B virus replication through cyclin G(1) -modulated P53 activity. Hepatology 2012; 55:730-41. [PMID: 22105316 DOI: 10.1002/hep.24809] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED Hepatitis B virus (HBV) causes chronic infection in about 350 million people worldwide. Given the important role of the most abundant liver-specific microRNA, miR-122, in hepatic function and liver pathology, here we investigated the potential role and mechanism of miR-122 in regulating HBV replication. We found that miR-122 expression in liver was significantly down-regulated in patients with HBV infection compared with healthy controls, and the miR-122 levels were negatively correlated with intrahepatic viral load and hepatic necroinflammation. The depletion of endogenous miR-122 by its antisense inhibitor led to enhanced HBV replication, whereas overexpression of miR-122 by transfection of mimic or its expression vector inhibited viral production. We next identified cyclin G(1) as an miR-122 target from multiple candidate target genes that are involved in the regulation of HBV replication. Overexpression and knockdown studies both showed that cyclin G(1) regulated viral replication in HBV transfected cells. We also observed that cyclin G(1) expression was up-regulated in HBV-infected patients, and cyclin G(1) levels were inversely associated with miR-122 expression in liver tissues. Using coimmunoprecipitation, a luciferase reporter system, and electrophoretic mobility shift assay, we further demonstrated that cyclin G(1) specifically interacted with p53, and this interaction blocked the specific binding of p53 to HBV enhancer elements and simultaneously abrogated p53-mediated inhibition of HBV transcription. Finally, we show that miR-122 suppressed HBV replication in p53 wildtype cells but not in null isogenic cells. CONCLUSION miR-122 down-regulates its target cyclin G(1) , and thus interrupts the interaction between cyclin G(1) and p53 and abrogates p53-mediated inhibition of HBV replication. Our work shows that miR-122 down-regulation induced by HBV infection can impact HBV replication and possibly contribute to viral persistence and carcinogenesis.
Collapse
Affiliation(s)
- Saifeng Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Yang F, Shu YJ, Yang YQ, Song FL, Pan YF, Long XY, Chen G, Zhang YM. The pharmacokinetics of recombinant human interferon-alpha-2b poly(lactic-co-glycolic acid) microspheres in rats. J Microencapsul 2011; 28:483-9. [DOI: 10.3109/02652048.2011.586065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
36
|
Detección de hepatitis B oculta en donantes de bancos sangre, Colombia 2008-2009. BIOMEDICA 2011. [DOI: 10.7705/biomedica.v31i4.446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
37
|
Biologically important nucleosides: modern trends in biotechnology and application. MENDELEEV COMMUNICATIONS 2011. [DOI: 10.1016/j.mencom.2011.03.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
38
|
Akbar SMF, Yoshida O, Chen S, Cesar AJ, Abe M, Matsuura B, Hiasa Y, Onji M. Immune modulator and antiviral potential of dendritic cells pulsed with both hepatitis B surface antigen and core antigen for treating chronic HBV infection. Antivir Ther 2010; 15:887-95. [PMID: 20834101 DOI: 10.3851/imp1637] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Commercially available prophylactic vaccines containing hepatitis B surface antigen (HBsAg), which are used to prevent HBV infections, are not as effective as a therapeutic immune modulator for treating patients with chronic hepatitis B (CHB). In this study, the immunogenicity of dendritic cells (DC) loaded with both HBsAg and hepatitis B core antigen (HBcAg) was tested in HBV transgenic mice (TM; 1.2HB-BS10) in vivo and in patients with CHB in vitro. METHODS Spleen DC from HBV TM were cultured with a vaccine containing both HBsAg and HBcAg to produce HBsAg/HBcAg-pulsed DC. HBV TM were immunized twice at an interval of 4 weeks with HBsAg/HBcAg-pulsed DC and other immune modulators. Antibody titres to HBsAg (anti-HBs) were measured in sera. Antigen-specific T-cells and cytotoxic T-lymphocytes (CTLs) in the spleen and liver were detected by lymphoproliferative and ELISPOT assays, respectively. HBsAg/HBcAg-pulsed human blood DC were cultured with autologous T-cells from CHB patients to assess their antigen-specific immune modulatory capacities. RESULTS Significantly higher levels of anti-HBs, HBsAg-specific and HBcAg-specific T-cells and CTLs were detected in the spleen and liver of HBV TM immunized with HBsAg/HBcAg-pulsed DC compared with those immunized with other vaccine formulations (P<0.05). HBsAg/HBcAg-pulsed human blood DC also induced HBsAg- and HBcAg-specific proliferation of autologous T-cells from CHB patients. CONCLUSIONS The immune modulatory capacities of HBsAg/HBcAg-pulsed DC in HBV TM in vivo, and in patients with CHB in vitro, inspire optimism about a clinical trial with this cell-based vaccine in patients with CHB.
Collapse
|
39
|
Murakami E, Tolstykh T, Bao H, Niu C, Steuer HMM, Bao D, Chang W, Espiritu C, Bansal S, Lam AM, Otto MJ, Sofia MJ, Furman PA. Mechanism of activation of PSI-7851 and its diastereoisomer PSI-7977. J Biol Chem 2010; 285:34337-47. [PMID: 20801890 DOI: 10.1074/jbc.m110.161802] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A phosphoramidate prodrug of 2'-deoxy-2'-α-fluoro-β-C-methyluridine-5'-monophosphate, PSI-7851, demonstrates potent anti-hepatitis C virus (HCV) activity both in vitro and in vivo. PSI-7851 is a mixture of two diastereoisomers, PSI-7976 and PSI-7977, with PSI-7977 being the more active inhibitor of HCV RNA replication in the HCV replicon assay. To inhibit the HCV NS5B RNA-dependent RNA polymerase, PSI-7851 must be metabolized to the active triphosphate form. The first step, hydrolysis of the carboxyl ester by human cathepsin A (CatA) and/or carboxylesterase 1 (CES1), is a stereospecific reaction. Western blot analysis showed that CatA and CES1 are both expressed in primary human hepatocytes. However, expression of CES1 is undetectable in clone A replicon cells. Studies with inhibitors of CatA and/or CES1 indicated that CatA is primarily responsible for hydrolysis of the carboxyl ester in clone A cells, although in primary human hepatocytes, both CatA and CES1 contribute to the hydrolysis. Hydrolysis of the ester is followed by a putative nucleophilic attack on the phosphorus by the carboxyl group resulting in the spontaneous elimination of phenol and the production of an alaninyl phosphate metabolite, PSI-352707, which is common to both isomers. The removal of the amino acid moiety of PSI-352707 is catalyzed by histidine triad nucleotide-binding protein 1 (Hint1) to give the 5'-monophosphate form, PSI-7411. siRNA-mediated Hint1 knockdown studies further indicate that Hint1 is, at least in part, responsible for converting PSI-352707 to PSI-7411. PSI-7411 is then consecutively phosphorylated to the diphosphate, PSI-7410, and to the active triphosphate metabolite, PSI-7409, by UMP-CMP kinase and nucleoside diphosphate kinase, respectively.
Collapse
|
40
|
Abstract
Among the microorganisms that cause diseases of medical or veterinary importance, the only group that is entirely dependent on the host, and hence not easily amenable to therapy via pharmaceuticals, is the viruses. Since viruses are obligate intracellular pathogens, and therefore depend a great deal on cellular processes, direct therapy of viral infections is difficult. Thus, modifying or targeting nonspecific or specific immune responses is an important aspect of intervention of ongoing viral infections. However, as a result of the unavailability of effective vaccines and the extended duration of manifestation, chronic viral infections are the most suitable for immunotherapies. We present an overview of various immunological strategies that have been applied for treating viral infections after exposure to the infectious agent.
Collapse
Affiliation(s)
- Nagendra R Hegde
- Bharat Biotech Foundation, Genome Valley, Turkapally, Shameerpet Mandal, Hyderabad 500078, India.
| | | | | | | |
Collapse
|
41
|
Liu LJ, Wang JH, Du SC, Tian JH, Yang RF, Wei L. rtE218G, a novel hepatitis B virus mutation with resistance to adefovir dipivoxil in patients with chronic hepatitis B. J Viral Hepat 2010; 17 Suppl 1:66-72. [PMID: 20586936 DOI: 10.1111/j.1365-2893.2010.01273.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Antiviral therapy is a potentially successful approach for the treatment of patients with Hepatitis B virus (HBV) infection. One antiviral agent is the nucleoside analogue adefovir dipivoxil (ADV). Its efficiency is compromised by the emergence of drug-resistant HBV mutants. Although three major ADV-resistant mutations of HBV are known, rtA181T/V and rtN236T, HBV mutations associated with ADV resistance have not been fully identified. We analyzed DNA sequences that covered a 244 base pair region of the HBV polymerase gene from patients with clinical manifestations of ADV resistance. A novel pattern of amino acid substitutions in HBV polymerase was detected in 26 out of 86 patients. This mutant exhibited a substitution of glycine for glutamic acid at residue 218 (rtE218G). Transient transfection of the HBV replication-competent construct including the rtE218G mutation was performed in HepG2 cells in order to determine the relevance of this mutation to ADV resistance. Phenotypic analyses demonstrated that the rtE218G mutation could independently confer resistance to ADV in vitro, with a 50% inhibitory concentration (IC(50)) 5.5-fold higher than wild-type HBV. RtE218G-mutated HBV also showed a decreased replication capacity in vitro, equal to 87% of wild-type HBV. The present study showed that the rtE218G mutation may be a novel ADV-resistant mutation. Further work will focus on resistance surveillance and cross-resistance analyses, and the molecular mechanisms involved.
Collapse
Affiliation(s)
- L J Liu
- Peking University People's Hospital, Peking University Hepatology Institute, Beijing, China
| | | | | | | | | | | |
Collapse
|
42
|
Manuel O, Baid-Agrawal S, Pascual M. Kidney transplant patients. Infect Dis (Lond) 2010. [DOI: 10.1016/b978-0-323-04579-7.00080-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
43
|
Zhu X, Zhao G, Zhou X, Xu X, Xia G, Zheng Z, Wang L, Yang X, Li S. 2,4-Diaryl-4,6,7,8-tetrahydroquinazolin-5(1H)-one derivatives as anti-HBV agents targeting at capsid assembly. Bioorg Med Chem Lett 2010; 20:299-301. [DOI: 10.1016/j.bmcl.2009.10.119] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Revised: 09/29/2009] [Accepted: 10/27/2009] [Indexed: 11/25/2022]
|
44
|
Cellular pharmacology of the anti-hepatitis B virus agent beta-L-2',3'-didehydro-2',3'-dideoxy-N4-hydroxycytidine: relevance for activation in HepG2 cells. Antimicrob Agents Chemother 2009; 54:341-5. [PMID: 19917760 DOI: 10.1128/aac.01176-09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Beta-l-2',3'-didehydro-2',3'-dideoxy-N(4)-hydroxycytidine (l-Hyd4C) was demonstrated to be an effective and highly selective inhibitor of hepatitis B virus (HBV) replication in HepG2.2.15 cells (50% effective dose [ED(50)] = 0.03 microM; 50% cytotoxic dose [CD(50)] = 2,500 microM). In the present study, we investigated the intracellular pharmacology of tritiated l-Hyd4C in HepG2 cells. l-[(3)H]Hyd4C was shown to be phosphorylated extensively and rapidly to the 5'-mono-, 5'-di-, and 5'-triphosphate derivatives. Other metabolites deriving from a reduction or removal of the NHOH group of l-Hyd4C could not be detected, although both reactions were described as the primary catabolic pathways of the stereoisomer ss-d-N(4)-hydroxycytidine in HepG2 cells. Also, the formation of liponucleotide metabolites, such as the 5'-diphosphocholine derivative of l-Hyd4C, as described for some l-deoxycytidine analogues, seems to be unlikely. After incubation of HepG2 cells with 10 microM l-[(3)H]Hyd4C for 24 h, the 5'-triphosphate accumulated to 19.4 +/- 2.7 pmol/10(6) cells. The predominant peak belonged to 5-diphosphate, with 43.5 +/- 4.3 pmol/10(6) cells. The intracellular half-life of the 5'-triphosphate was estimated to be 29.7 h. This extended half-life probably reflects a generally low affinity of 5'-phosphorylated l-deoxycytidine derivatives for phosphate-degrading enzymes but may additionally be caused by an efficient rephosphorylation of the 5'-diphosphate during a drug-free incubation. The high 5'-triphosphate level and its extended half-life in HepG2 cells are consistent with the potent antiviral activity of l-Hyd4C.
Collapse
|
45
|
Li J, Chen F, Zheng M, Zhu H, Zhao D, Liu W, Liu W, Chen Z. Inhibition of STAT1 methylation is involved in the resistance of hepatitis B virus to Interferon alpha. Antiviral Res 2009; 85:463-9. [PMID: 19857525 DOI: 10.1016/j.antiviral.2009.10.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 10/11/2009] [Accepted: 10/16/2009] [Indexed: 12/24/2022]
Abstract
As a major therapy for hepatitis B virus (HBV) infection, Interferon alpha (IFN-alpha) triggers intracellular signal transduction including JAK-STAT pathway to produce various antiviral effector mechanisms. However, patients with chronic hepatitis B usually show low response to IFN-alpha treatment and the underlying mechanism remains unclear. In the present study, HepG2 and HepG2.2.15 cells were used to examine the Type I IFN receptors expression, phosphorylation and methylation of STAT1. STAT1-PIAS1 interaction in cells was tested by protein co-immunoprecipitation. The potential improvement of S-adenosylmethionine (SAM) in the antiviral effect of IFN-alpha was also investigated. Our data demonstrated that both chains of the Type I IFN receptors were expressed for a much higher extent in HepG2.2.15 cells than in HepG2 cells. HBV inhibited dramatically the methylation rather than the phosphorylation of STAT1, which was consistent with an increased STAT1-PIAS1 interaction. Combined with IFN-alpha, SAM treatment effectively improved STAT1 methylation and attenuated STAT1-PIAS1 binding, followed by increased PKR and 2',5'-OAS mRNA expression, thus significantly reducing the HBsAg, HBeAg protein levels and HBV DNA load in the supernatant of HepG2.2.15 cells. Less STAT1 methylation and subsequent increased STAT1-PIAS1 interaction are involved in the mechanism of the IFN-alpha-antagonistic activity of HBV. By improving STAT1 methylation, SAM can enhance the antiviral effect of IFN-alpha.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Infectious Disease Diagnosis and Treatment, First Affiliated Hospital, Zhejiang University College of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang 310003, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Akbar SMF, Hiasa Y, Mishiro S, Onji M. Treatment of hepatitis B virus-infected patients: utility of therapeutic recommendations in developing countries. Expert Opin Pharmacother 2009; 10:1605-14. [PMID: 19496738 DOI: 10.1517/14656560903005579] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The treatment of individuals infected with hepatitis B virus (HBV) is a complex issue in practical settings, despite the explosion of new and effective antiviral agents. OBJECTIVE To assess the scope and limitations of ongoing treatment guidelines against HBV from a global perspective. METHODS Present therapeutic guidelines against HBV have been discussed with emphasis on their value in developing countries that harbor about 90% of the total number of global patients who are infected with HBV. RESULTS/CONCLUSION Treatment of HBV-infected patients should be appropriately followed up and healthcare delivery systems should be able to combat treatment-induced adverse side effects. Current therapeutic guidelines should be optimized based on the socio-economic conditions of developing countries.
Collapse
Affiliation(s)
- Sheikh Mohammad Fazle Akbar
- Department of Medical Sciences, Toshiba General Hospital, 6-3-22 Higashi Oi, Shinagawa, Tokyo 140-8522, Japan.
| | | | | | | |
Collapse
|
47
|
Nies AT, Koepsell H, Winter S, Burk O, Klein K, Kerb R, Zanger UM, Keppler D, Schwab M, Schaeffeler E. Expression of organic cation transporters OCT1 (SLC22A1) and OCT3 (SLC22A3) is affected by genetic factors and cholestasis in human liver. Hepatology 2009; 50:1227-40. [PMID: 19591196 DOI: 10.1002/hep.23103] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
UNLABELLED An important function of hepatocytes is the biotransformation and elimination of various drugs, many of which are organic cations and are taken up by organic cation transporters (OCTs) of the solute carrier family 22 (SLC22). Because interindividual variability of OCT expression may affect response to cationic drugs such as metformin, we systematically investigated genetic and nongenetic factors of OCT1/SLC22A1 and OCT3/SLC22A3 expression in human liver. OCT1 and OCT3 expression (messenger RNA [mRNA], protein) was analyzed in liver tissue samples from 150 Caucasian subjects. Hepatic OCTs were localized by way of immunofluorescence microscopy. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and genome-wide single-nucleotide polymorphism microarray technology served to genotype 92 variants in the SLC22A1-A3/OCT1-3 gene cluster. Transport of metformin by recombinant human OCT1 and OCT3 was compared using transfected cells. OCT1 mRNA and protein expression varied 113- and 83-fold, respectively; OCT3 mRNA expression varied 27-fold. OCT1 transcript levels were on average 15-fold higher compared with OCT3. We localized the OCT3 protein to the basolateral hepatocyte membrane and identified metformin as an OCT3 substrate. OCT1 and OCT3 expression are independent of age and sex but were significantly reduced in liver donors diagnosed as cholestatic (P < or = 0.01). Several haplotypes for OCT1 and OCT3 were identified. Multivariate analysis adjusted for multiple testing showed that only the OCT1-Arg61Cys variant (rs12208357) strongly correlated with decreased OCT1 protein expression (P < 0.0001), and four variants in OCT3 (rs2292334, rs2048327, rs1810126, rs3088442) were associated with reduced OCT3 mRNA levels (P = 0.03). CONCLUSION We identified cholestasis and genetic variants as critical determinants for considerable interindividual variability of hepatic OCT1 and OCT3 expression. This indicates consequences for hepatic elimination of and response to OCT substrates such as metformin.
Collapse
Affiliation(s)
- Anne T Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Inhibition of herpesvirus replication by 5-substituted 4'-thiopyrimidine nucleosides. Antimicrob Agents Chemother 2009; 53:5251-8. [PMID: 19770274 DOI: 10.1128/aac.00417-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A series of 4'-thionucleosides were synthesized and evaluated for activities against orthopoxviruses and herpesviruses. We reported previously that one analog, 5-iodo-4'-thio-2'-deoxyuridine (4'-thioIDU), exhibits good activity both in vitro and in vivo against two orthopoxviruses. This compound also has good activity in cell culture against many of the herpesviruses. It inhibited the replication of herpes simplex virus type 1 (HSV-1), HSV-2, and varicella-zoster virus with 50% effective concentrations (EC(50)s) of 0.1, 0.5, and 2 microM, respectively. It also inhibited the replication of human cytomegalovirus (HCMV) with an EC(50) of 5.9 microM but did not selectively inhibit Epstein-Barr virus, human herpesvirus 6, or human herpesvirus 8. While acyclovir-resistant strains of HSV-1 and HSV-2 were comparatively resistant to 4'-thioIDU, it retained modest activity (EC(50)s of 4 to 12 microM) against these strains. Some ganciclovir-resistant strains of HCMV also exhibited reduced susceptibilities to the compound, which appeared to be related to the specific mutations in the DNA polymerase, consistent with the observed incorporation of the compound into viral DNA. The activity of 4'-thioIDU was also evaluated using mice infected intranasally with the MS strain of HSV-2. Although there was no decrease in final mortality rates, the mean length of survival after inoculation increased significantly (P < 0.05) for all animals receiving 4'-thioIDU. The findings from the studies presented here suggest that 4'-thioIDU is a good inhibitor of some herpesviruses, as well as orthopoxviruses, and this class of compounds warrants further study as a therapy for infections with these viruses.
Collapse
|
49
|
Wang F, Wang H, Shen H, Meng C, Weng X, Zhang W. Evolution of hepatitis B virus polymerase mutations in a patient with HBeAg-positive chronic hepatitis B virus treated with sequential monotherapy and add-on nucleoside/nucleotide analogues. Clin Ther 2009; 31:360-6. [PMID: 19302908 DOI: 10.1016/j.clinthera.2009.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2008] [Indexed: 12/26/2022]
Abstract
BACKGROUND Nucleoside/nucleotide analogues are a fundamental tool for the treatment of chronic hepatitis B virus (HBV). Sequential anti-HBV treatment might lead to the selection of mutations. OBJECTIVE This report aimed to analyze the genetic evolution of the reverse-transcriptase (RT) gene of viral quasispecies in a patient with hepatitis B e antigen (HBeAg)-positive chronic HBV who received, sequentially, lamivudine (LAM), adefovir dipivoxil (ADV), and ADV + telbivudine (LDT) combination treatment over a total of 108 weeks. METHODS A 20-year-old Chinese man presented to Huashan Hospital, Fudan University, Shanghai, People's Republic of China, with hepatitis B surface antigen-positive and HBeAg-positive chronic HBV and was sequentially treated with LAM 100 mg/d for 18weeks,ADV 10mg/d for 68weeks, and ADV 10mg/d + LDT 600 mg/d combination treatment for 22 weeks. Compliance was monitored every 4 weeks using a pill count. For genotypic analysis, the RT region of the polymerase gene from the serum of this patient was amplified, cloned, and sequenced. Fifty clones with HBV insert were selected for sequencing at weeks 0 (baseline), 18, 22, 60, 70, 86, and 108. RESULTS The rtM204V/L LAM-resistance mutation was detected in 4.4% (2/45) of clones prior to LAM treatment. At week 18 during LAM treatment, the rtM204I mutation became predominant, being present in 79.5% (35/44) of clones. The rtM204I mutation was associated with compensatory mutations (rtL180M and rtT184L). A total of 9.1% (4/44) of the clones harbored the rtL180M + rtT184L + rtM204I mutations. Two new mutations, rtL229V and rtV191I, were detected in 75.0% (33/44) and 11.4% (5/44) of clones, respectively. At week 22 during ADV treatment, LAM-resistance mutations (rtL180M, rtT184L, rtM204I, rtV191I, and rtL229V) were not detected. At week 86 during ADV therapy, the rtN236T ADV-resistance mutation was detected in 58.8% (20/34) of clones. A total of 20.6% (7/34) of the clones harbored the rtK212T + rtM250L mutation, and rtA181V was found in 2.9% (1/34) of the clones. At week 108, after the patient had been receiving ADV + LDT combination therapy for 22 weeks, rtS202G and rtI269T had emerged, representing 28.9% (13/45) and 8.9% (4/45), respectively, of the viral population during ADV + LDT combination treatment. We also detected several polymorphic sites,including rtF221Y, rtS223A, rtI224V, rtN238H, rtL267Q, and rtQ271M, during the sequential treatment. After 22 weeks of combination treatment, HBV DNA count was decreased to less than the lower limit of quantitation (<200 copies/mL). CONCLUSIONS This report identified HBV mutations that escaped the antiviral pressure of LAM, ADV, and ADV + LDT in this patient and provided insight into the process of mutation selection through genotypic analysis during antiviral treatment. Mutations selected under sequential treatments of LAM, ADV, and ADV + LDT can lead to a series of compensatory mutations, which partially restore the level of viral replication. ADV administered in combination with LDT appeared to be effective in this selected case with clinical or virologic resistance to sequential treatment with LAM and ADV.
Collapse
Affiliation(s)
- Feifei Wang
- Department of Infectious Disease, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
50
|
Comparative study of anti-hepatitis B virus RNA interference by double-stranded adeno-associated virus serotypes 7, 8, and 9. Mol Ther 2008; 17:352-9. [PMID: 19066602 DOI: 10.1038/mt.2008.245] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Using a hepatitis B virus (HBV) transgenic mouse model, we previously showed that a single dose of double-stranded adeno-associated virus (dsAAV) vector serotype 8 carrying a small hairpin RNA (shRNA) effectively reduces HBV replication and gene expression, but the effect gradually decreases with time. In this report, we compared the anti-HBV RNA interference (RNAi) effect of dsAAV8 with those of dsAAV7 and dsAAV9, two other hepatotropic AAV vectors, and examined whether the sequential use of these heterologous AAV vectors could prolong the anti-HBV effect. Our results showed that shRNA delivered by each of the three dsAAV vectors profoundly reduced the serum HBV titer and liver HBV mRNA and DNA levels in the transgenic mice for up to 22 weeks, with dsAAV8 having the greatest inhibitory effect, followed by dsAAV9 and dsAAV7. The potency of dsAAV8 correlated with the presence of higher levels of vector DNA and anti-HBV shRNA in the liver. An in vivo cross-administration experiment showed that preexisting anti-AAV8 antibody completely blocked the anti-HBV RNAi effect of dsAAV8, but had no effect on the potency of dsAAV7 and dsAAV9. Moreover, we demonstrated that a longer anti-HBV effect could be achieved by the sequential use of dsAAV8 and dsAAV9. These results indicate that effective and persistent HBV suppression might be achieved by a combination of the power of RNAi silencing effect and multiple treatments with different AAV serotypes.Molecular Therapy (2009) 17 2, 352-359 doi:10.1038/mt.2008.245.
Collapse
|