1
|
Abstract
SummaryWorking with mobile robots, prior to execute the local planning stage, they must know the environment where they are moving. For that reason the perception and mapping stages must be performed previously. This paper presents a survey in the state of the art in detection and tracking of moving obstacles (DATMO). The aim of what follows is to provide an overview of the most remarkable methods at each field specially in indoor environments where dynamic obstacles can be potentially more dangerous and unpredictable. We are going to show related DATMO methods organized in three approaches: model-free, model-based and grid-based. In addition, a comparison between them and conclusions will be presented.
Collapse
|
2
|
Abstract
In this paper, we present a model-free detection-based tracking approach for detecting and tracking moving objects in street scenes from point clouds obtained via a Doppler LiDAR that can not only collect spatial information (e.g., point clouds) but also Doppler images by using Doppler-shifted frequencies. Using our approach, Doppler images are used to detect moving points and determine the number of moving objects followed by complete segmentations via a region growing technique. The tracking approach is based on Multiple Hypothesis Tracking (MHT) with two extensions. One is that a point cloud descriptor, Oriented Ensemble of Shape Function (OESF), is proposed to evaluate the structure similarity when doing object-to-track association. Another is to use Doppler images to improve the estimation of dynamic state of moving objects. The quantitative evaluation of detection and tracking results on different datasets shows the advantages of Doppler LiDAR and the effectiveness of our approach.
Collapse
|
3
|
Dequaire J, Ondrúška P, Rao D, Wang D, Posner I. Deep tracking in the wild: End-to-end tracking using recurrent neural networks. Int J Rob Res 2017. [DOI: 10.1177/0278364917710543] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This paper presents a novel approach for tracking static and dynamic objects for an autonomous vehicle operating in complex urban environments. Whereas traditional approaches for tracking often feature numerous hand-engineered stages, this method is learned end-to-end and can directly predict a fully unoccluded occupancy grid from raw laser input. We employ a recurrent neural network to capture the state and evolution of the environment, and train the model in an entirely unsupervised manner. In doing so, our use case compares to model-free, multi-object tracking although we do not explicitly perform the underlying data-association process. Further, we demonstrate that the underlying representation learned for the tracking task can be leveraged via inductive transfer to train an object detector in a data efficient manner. We motivate a number of architectural features and show the positive contribution of dilated convolutions, dynamic and static memory units to the task of tracking and classifying complex dynamic scenes through full occlusion. Our experimental results illustrate the ability of the model to track cars, buses, pedestrians, and cyclists from both moving and stationary platforms. Further, we compare and contrast the approach with a more traditional model-free multi-object tracking pipeline, demonstrating that it can more accurately predict future states of objects from current inputs.
Collapse
Affiliation(s)
| | | | - Dushyant Rao
- Oxford Robotics Institute, University of Oxford, UK
| | - Dominic Wang
- Oxford Robotics Institute, University of Oxford, UK
| | | |
Collapse
|
4
|
Wang DZ, Posner I, Newman P. Model-free detection and tracking of dynamic objects with 2D lidar. Int J Rob Res 2015. [DOI: 10.1177/0278364914562237] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We present a new approach to detection and tracking of moving objects with a 2D laser scanner for autonomous driving applications. Objects are modelled with a set of rigidly attached sample points along their boundaries whose positions are initialized with and updated by raw laser measurements, thus allowing a non-parametric representation that is capable of representing objects independent of their classes and shapes. Detection and tracking of such object models are handled in a theoretically principled manner as a Bayes filter where the motion states and shape information of all objects are represented as a part of a joint state which includes in addition the pose of the sensor and geometry of the static part of the world. We derive the prediction and observation models for the evolution of the joint state, and describe how the knowledge of the static local background helps in identifying dynamic objects from static ones in a principled and straightforward way. Dealing with raw laser points poses a significant challenge to data association. We propose a hierarchical approach, and present a new variant of the well-known Joint Compatibility Branch and Bound algorithm to respect and take advantage of the constraints of the problem introduced through correlations between observations. Finally, we calibrate the system systematically on real world data containing 7,500 labelled object examples and validate on 6,000 test cases. We demonstrate its performance over an existing industry standard targeted at the same problem domain as well as a classical approach to model-free object tracking.
Collapse
Affiliation(s)
| | | | - Paul Newman
- Mobile Robotics Group, University of Oxford, UK
| |
Collapse
|
5
|
He T, Hirose S. Observation-driven Bayesian Filtering for Global Location Estimation in the Field Area. J FIELD ROBOT 2013. [DOI: 10.1002/rob.21458] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tao He
- Department of Automation; Shanghai Jiao Tong University; 2-509, SEIEE Buildings, 800 Dongchuan, RD. Shanghai CN 200240
| | - Shigeo Hirose
- Department of Mechanical and Aerospace Engineering; Tokyo Institute of Technology; Ishikawadai 1st bldg, 2-12-1 I1-52, Ohokayama Meguro-ku Tokyo, JP 152-8552
| |
Collapse
|