1
|
Abdolahinia ED, Golestani S, Seif S, Afra N, Aflatoonian K, Jalalian A, Valizadeh N, Abdollahinia ED. A review of the therapeutic potential of dental stem cells as scaffold-free models for tissue engineering application. Tissue Cell 2024; 86:102281. [PMID: 38070384 DOI: 10.1016/j.tice.2023.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 01/21/2024]
Abstract
In the realm of regenerative medicine, tissue engineering has introduced innovative approaches to facilitate tissue regeneration. Specifically, in pulp tissue engineering, both scaffold-based and scaffold-free techniques have been applied. Relevant articles were meticulously chosen from PubMed, Scopus, and Google Scholar databases through a comprehensive search spanning from October 2022 to December 2022. Despite the inherent limitations of scaffolding, including inadequate mechanical strength for hard tissues, insufficient vents for vessel penetration, immunogenicity, and suboptimal reproducibility-especially with natural polymeric scaffolds-scaffold-free tissue engineering has garnered significant attention. This methodology employs three-dimensional (3D) cell aggregates such as spheroids and cell sheets with extracellular matrix, facilitating precise regeneration of target tissues. The choice of technique aside, stem cells play a pivotal role in tissue engineering, with dental stem cells emerging as particularly promising resources. Their pluripotent nature, non-invasive extraction process, and unique properties render them highly suitable for scaffold-free tissue engineering. This study delves into the latest advancements in leveraging dental stem cells and scaffold-free techniques for the regeneration of various tissues. This paper offers a comprehensive summary of recent developments in the utilization of dental stem cells and scaffold-free methods for tissue generation. It explores the potential of these approaches to advance tissue engineering and their effectiveness in therapies aimed at tissue regeneration.
Collapse
Affiliation(s)
- Elaheh Dalir Abdolahinia
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Oral Science and Translation Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, United States.
| | - Shayan Golestani
- Department of Oral and Maxillofacial Surgery, Dental School, Islamic Azad University, Isfahan ( Khorasgan) Branch, Isfahan, Iran
| | - Sepideh Seif
- Faculty of Dentistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Narges Afra
- Faculty of Dentistry, Hormozgan University of Medical Sciences, Bandarabbas, Iran
| | - Khotan Aflatoonian
- Department of Restorative Dentistry, Dental School, Shahed University of Medical Sciences, Tehran, Iran
| | - Ali Jalalian
- Faculty of Dentistry, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Nasrin Valizadeh
- Chemistry Department, Sciences Faculty, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Elham Dalir Abdollahinia
- Fellowship of Endocrinology, Endocrinology Department, Tabriz University of Medical Sciences, Iran.
| |
Collapse
|
2
|
Hu D, Li X, Li J, Tong P, Li Z, Lin G, Sun Y, Wang J. The preclinical and clinical progress of cell sheet engineering in regenerative medicine. Stem Cell Res Ther 2023; 14:112. [PMID: 37106373 PMCID: PMC10136407 DOI: 10.1186/s13287-023-03340-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Cell therapy is an accessible method for curing damaged organs or tissues. Yet, this approach is limited by the delivery efficiency of cell suspension injection. Over recent years, biological scaffolds have emerged as carriers of delivering therapeutic cells to the target sites. Although they can be regarded as revolutionary research output and promote the development of tissue engineering, the defect of biological scaffolds in repairing cell-dense tissues is apparent. Cell sheet engineering (CSE) is a novel technique that supports enzyme-free cell detachment in the shape of a sheet-like structure. Compared with the traditional method of enzymatic digestion, products harvested by this technique retain extracellular matrix (ECM) secreted by cells as well as cell-matrix and intercellular junctions established during in vitro culture. Herein, we discussed the current status and recent progress of CSE in basic research and clinical application by reviewing relevant articles that have been published, hoping to provide a reference for the development of CSE in the field of stem cells and regenerative medicine.
Collapse
Affiliation(s)
- Danping Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- HANGZHOU CHEXMED TECHNOLOGY CO., LTD, Hangzhou, 310000, China
| | - Xinyu Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Jie Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Pei Tong
- Hospital of Hunan Guangxiu, Medical College of Hunan Normal University, Hunan Normal University, Changsha, 410008, China
| | - Zhe Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China
| | - Yi Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China.
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China.
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China.
| | - Juan Wang
- Shanghai Biomass Pharmaceutical Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, 200437, China.
| |
Collapse
|
3
|
The Potential of Cell Sheet Technology for Beta Cell Replacement Therapy. CURRENT TRANSPLANTATION REPORTS 2022. [DOI: 10.1007/s40472-022-00371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Abstract
Purpose of Review
Here, we review the use of cell sheet technology using different cell types and its potential for restoring the extracellular matrix microenvironment, perfusion, and immunomodulatory action on islets and beta cells.
Recent Findings
Cell sheets can be produced with different fabrication techniques ranging from the widely used temperature responsive system to the magnetic system. A variety of cells have been used to produce cell sheets including skin fibroblasts, smooth muscle cells, human umbilical vein endothelial cells, and mesenchymal stem cells.
Summary
CST would allow to recreate the ECM of islets which would provide cues to support islet survival and improvement of islet function. Depending on the used cell type, different additional supporting properties like immunoprotection or cues for better revascularization could be provided. Furthermore, CST offers the possibility to use other implantation sites than inside the liver. Further research should focus on cell sheet thickness and size to generate a potential translational therapy.
Collapse
|
4
|
Evaluating the clinical translational relevance of animal models for limbal stem cell deficiency: A systematic review. Ocul Surf 2021; 23:169-183. [PMID: 34583088 DOI: 10.1016/j.jtos.2021.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Animal models are pivotal for elucidating pathophysiological mechanisms and evaluating novel therapies. This systematic review identified studies that developed or adapted animal models of limbal stem cell deficiency (LSCD), assessed their reporting quality, summarized their key characteristics, and established their clinical translational relevance to human disease. METHODS The protocol was prospectively registered (PROSPERO CRD42020203937). Searches were conducted in PubMed, Ovid EMBASE and Web of Science in August 2020. Two authors screened citations, extracted data, assessed the reporting quality of eligible studies using the ARRIVE guidelines, and judged the clinical translational relevance of each model using a custom matrix. RESULTS 105 studies were included. Rabbits were the most common animal species. Overall, 97% of studies recapitulated LSCD to a clinical etiology, however 62% did not provide sufficient methodological detail to enable independent reproduction of the model. Adverse events and/or exclusion of animals were infrequently (20%) reported. Approximately one-quarter of studies did not produce the intended severity of LSCD; 34% provided insufficient information to assess the fidelity of disease induction. Adjunctive diagnostic confirmation of LSCD induction was performed in 13% of studies. CONCLUSIONS This is the first systematic review to assess the reporting quality and clinical translational relevance of animal models of LSCD. Models of LSCD have evolved over time, resulting in variable reporting of the characteristics of animals, experimental procedures and adverse events. In most studies, validation of LSCD was made using clinical tests; newer adjunctive techniques would enhance diagnostic validation. As most studies sought to evaluate novel therapies for LSCD, animal models should ideally recapitulate all features of the condition that develop in patients.
Collapse
|
5
|
Galindo S, Herreras JM, López-Paniagua M, Rey E, de la Mata A, Plata-Cordero M, Calonge M, Nieto-Miguel T. Therapeutic Effect of Human Adipose Tissue-Derived Mesenchymal Stem Cells in Experimental Corneal Failure Due to Limbal Stem Cell Niche Damage. Stem Cells 2017; 35:2160-2174. [DOI: 10.1002/stem.2672] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/18/2017] [Accepted: 06/17/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Sara Galindo
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid; Valladolid Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health; Spain
| | - José M. Herreras
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid; Valladolid Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health; Spain
| | - Marina López-Paniagua
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid; Valladolid Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health; Spain
| | - Esther Rey
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid; Valladolid Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health; Spain
| | - Ana de la Mata
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid; Valladolid Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health; Spain
| | - María Plata-Cordero
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid; Valladolid Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health; Spain
| | - Margarita Calonge
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid; Valladolid Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health; Spain
| | - Teresa Nieto-Miguel
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid; Valladolid Spain
- CIBER-BBN (Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine), Carlos III National Institute of Health; Spain
| |
Collapse
|
6
|
Limbal Stem Cell Deficiency: Current Treatment Options and Emerging Therapies. Stem Cells Int 2015; 2016:9798374. [PMID: 26788074 PMCID: PMC4691643 DOI: 10.1155/2016/9798374] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/18/2015] [Indexed: 12/15/2022] Open
Abstract
Severe ocular surface disease can result in limbal stem cell deficiency (LSCD), a condition leading to decreased visual acuity, photophobia, and ocular pain. To restore the ocular surface in advanced stem cell deficient corneas, an autologous or allogenic limbal stem cell transplantation is performed. In recent years, the risk of secondary LSCD due to removal of large limbal grafts has been significantly reduced by the optimization of cultivated limbal epithelial transplantation (CLET). Despite the great successes of CLET, there still is room for improvement as overall success rate is 70% and visual acuity often remains suboptimal after successful transplantation. Simple limbal epithelial transplantation reports higher success rates but has not been performed in as many patients yet. This review focuses on limbal epithelial stem cells and the pathophysiology of LSCD. State-of-the-art therapeutic management of LSCD is described, and new and evolving techniques in ocular surface regeneration are being discussed, in particular, advantages and disadvantages of alternative cell scaffolds and cell sources for cell based ocular surface reconstruction.
Collapse
|
7
|
Chen G, Qi Y, Niu L, DI T, Zhong J, Fang T, Yan W. Application of the cell sheet technique in tissue engineering. Biomed Rep 2015; 3:749-757. [PMID: 26623011 DOI: 10.3892/br.2015.522] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/07/2015] [Indexed: 01/07/2023] Open
Abstract
The development and application of the tissue engineering technique has shown a significant potential in regenerative medicine. However, the limitations of conventional tissue engineering methods (cell suspensions, scaffolds and/or growth factors) restrict its application in certain fields. The novel cell sheet technique can overcome such disadvantages. Cultured cells can be harvested as intact sheets without the use of proteolytic enzymes, such as trypsin or dispase, which can result in cell damage and loss of differentiated phenotypes. The cell sheet is a complete layer, which contains extracellular matrix, ion channel, growth factor receptors, nexin and other important cell surface proteins. Mesenchymal stem cells (MSCs), which have the potential for multiple differentiation, are promising candidate seed cells for tissue engineering. The MSC sheet technique may have potential in the fields of regenerative medicine and tissue engineering in general. Additionally, induced pluripotent stem cell and embryonic stem cell-derived cell sheets have been proposed for tissue regeneration. Currently, the application of cell sheet for tissue reconstruction includes: Direct recipient sites implantation, superposition of cell sheets to construct three-dimensional structure for implantation, or cell sheet combined with scaffolds. The present review discusses the progress in cell sheet techniques, particularly stem cell sheet techniques, in tissue engineering.
Collapse
Affiliation(s)
- Guangnan Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Yiying Qi
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Lie Niu
- Department of Orthopedic Surgery, Dongping County People's Hospital, Taian, Shandong 271500, P.R. China
| | - Tuoyu DI
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Jinwei Zhong
- Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Tingting Fang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Liver Cancer Institute, Zhongshan Hospital, Xuhui, Shanghai 200032, P.R. China
| | - Weiqi Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
8
|
Hsu CC, Peng CH, Hung KH, Lee YY, Lin TC, Jang SF, Liu JH, Chen YT, Woung LC, Wang CY, Tsa CY, Chiou SH, Chen SJ, Chang YL. Stem Cell Therapy for Corneal Regeneration Medicine and Contemporary Nanomedicine for Corneal Disorders. Cell Transplant 2014; 24:1915-30. [PMID: 25506885 DOI: 10.3727/096368914x685744] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ocular surface is the outermost part of the visual system that faces many extrinsic or intrinsic threats, such as chemical burn, infectious pathogens, thermal injury, Stevens-Johnson syndrome, ocular pemphegoid, and other autoimmune diseases. The cornea plays an important role in conducting light into the eyes and protecting intraocular structures. Several ocular surface diseases will lead to the neovascularization or conjunctivalization of corneal epithelium, leaving opacified optical media. It is believed that some corneal limbal cells may present stem cell-like properties and are capable of regenerating corneal epithelium. Therefore, cultivation of limbal cells and reconstruction of the ocular surface with these limbal cell grafts have attracted tremendous interest in the past few years. Currently, stem cells are found to potentiate regenerative medicine by their capability of differentiation into multiple lineage cells. Among these, the most common cell sources for clinical use are embryonic, adult, and induced stem cells. Different stem cells have varied specific advantages and limitations for in vivo and in vitro expansion. Other than ocular surface diseases, culture and transplantation of corneal endothelial cells is another major issue for corneal decompensation and awaits further studies to find out comprehensive solutions dealing with nonregenerative corneal endothelium. Recently, studies of in vitro endothelium culture and ρ-associated kinase (ROCK) inhibitor have gained encouraging results. Some clinical trials have already been finished and achieved remarkable vision recovery. Finally, nanotechnology has shown great improvement in ocular drug delivery systems during the past two decades. Strategies to reconstruct the ocular surface could combine with nanoparticles to facilitate wound healing, drug delivery, and even neovascularization inhibition. In this review article, we summarized the major advances of corneal limbal stem cells, limbal stem cell deficiency, corneal endothelial cell culture/transplantation, and application of nanotechnology on ocular surface reconstruction. We also illustrated potential applications of current knowledge for the future treatment of ocular surface diseases.
Collapse
Affiliation(s)
- Chih-Chien Hsu
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
He H, Yiu SC. Stem cell-based therapy for treating limbal stem cells deficiency: A review of different strategies. Saudi J Ophthalmol 2014; 28:188-94. [PMID: 25278795 DOI: 10.1016/j.sjopt.2014.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 12/13/2022] Open
Abstract
The self renewal capability of limbal epithelial stem (LEST) cells is fundamental to the maintenance and healing of corneal epithelium. Limbal stem cell deficiency (LSCD), due to dysfunction or loss of LEST cells, therefore presents as persistent epithelial defects, corneal vascularization, conjunctivalization etc. Stem cell-based therapy, in its simplest form - limbal autograft, has been used successfully for more than a decade. For bilateral LSCD, similar approaches with limbal allografts have been unsuccessful largely due to strong immune rejection. Therefore, as an alternate strategy for treating bilateral LSCD, ex vivo expansion of the remaining LEST cells or autologous stem cells sourced from other potential sites is being explored. Different culture systems (with and without xenobiotic supplements) using substrates like amniotic membrane or fibrin gels have been used successfully for ex vivo LEST cell maintenance and reproduction by imitating the stem cell niche. This paper is organized into sections reviewing the LEST cells, LSCD and various stem cell-based approaches for treating LSCD and discussing future direction and challenges.
Collapse
Affiliation(s)
- Hong He
- The Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Samuel C Yiu
- The Wilmer Eye Institute, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|