1
|
Zhou P, Liu T, Liu W, Sun L, Kang H, Liu K, Luo P, Wang Y, Luo L, Dai H. An Antibacterial Bionic Periosteum with Angiogenesis-Neurogenesis Coupling Effect for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38623938 DOI: 10.1021/acsami.4c01206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The periosteum, rich in neurovascular networks, bone progenitor cells, and stem cells, is vital for bone repair. Current artificial periosteal materials face challenges in mechanical strength, bacterial infection, and promoting osteogenic differentiation and angiogenesis. To address these issues, we adjusted the electrospinning ratio of poly-ε-caprolactone and chitosan and incorporated Zn doping whitlockite with polydopamine coating into a nanofiber membrane. After a series of characterizations, optimal results were achieved with a poly-ε-caprolactone: chitosan ratio of 8:1 and 5% nanoparticle content. In vitro cell experiments and in vivo calvarial defect models, the sustained release of Mg2+ and Ca2+ promoted vascularization and new bone formation, respectively, while the release of Zn2+ was conducive to antibacterial and cooperated with Mg2+ to promote neurovascularization. Consequently, this antibacterial bionic periosteum with an angiogenesis-neurogenesis coupling effect demonstrates a promising potential for bone repair applications.
Collapse
Affiliation(s)
- Peiqian Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Tuozhou Liu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 511442, China
| | - Wenbin Liu
- Department of Orthopaedics, The Third Xiangya Hospital Central South University, 138 Tongzipo Road, Changsha, Hunan 410008, China
| | - Lingshun Sun
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Haifei Kang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Peiyuan Luo
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Youfa Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Ling Luo
- Department of Orthopaedics, The Third Xiangya Hospital Central South University, 138 Tongzipo Road, Changsha, Hunan 410008, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, China
| |
Collapse
|
2
|
Brozovich AA, Lenna S, Brenner C, Serpelloni S, Paradiso F, McCulloch P, Yustein JT, Weiner B, Taraballi F. Systemic Cisplatin Does Not Affect the Bone Regeneration Process in a Critical Size Defect Murine Model. ACS Biomater Sci Eng 2024; 10:1646-1660. [PMID: 38350651 PMCID: PMC10936525 DOI: 10.1021/acsbiomaterials.3c01266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/15/2024]
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor, and the current standard of care for OS includes neoadjuvant chemotherapy, followed by an R0 surgical resection of the primary tumor, and then postsurgical adjuvant chemotherapy. Bone reconstruction following OS resection is particularly challenging due to the size of the bone voids and because patients are treated with adjuvant and neoadjuvant systemic chemotherapy, which theoretically could impact bone formation. We hypothesized that an osteogenic material could be used in order to induce bone regeneration when adjuvant or neoadjuvant chemotherapy is given. We utilized a biomimetic, biodegradable magnesium-doped hydroxyapatite/type I collagen composite material (MHA/Coll) to promote bone regeneration in the presence of systemic chemotherapy in a murine critical size defect model. We found that in the presence of neoadjuvant or adjuvant chemotherapy, MHA/Coll is able to enhance and increase bone formation in a murine critical size defect model (11.16 ± 2.55 or 13.80 ± 3.18 versus 8.70 ± 0.81 mm3) for pre-op cisplatin + MHA/Coll (p-value = 0.1639) and MHA/Coll + post-op cisplatin (p-value = 0.1538), respectively, at 12 weeks. These findings indicate that neoadjuvant and adjuvant chemotherapy will not affect the ability of a biomimetic scaffold to regenerate bone to repair bone voids in OS patients. This preliminary data demonstrates that bone regeneration can occur in the presence of chemotherapy, suggesting that there may not be a necessity to modify the current standard of care concerning neoadjuvant and adjuvant chemotherapy for the treatment of metastatic sites or micrometastases.
Collapse
Affiliation(s)
- Ava A. Brozovich
- Department
of Orthopedics, Ohio State University, Wexner
Medical Center, 410 W.
10th Avenue, Columbus, Ohio 43210, United States
- Center
for Musculoskeletal Regeneration, Houston
Methodist Research Institute, Houston, Texas 77030, United States
- Houston
Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Stefania Lenna
- Center
for Musculoskeletal Regeneration, Houston
Methodist Research Institute, Houston, Texas 77030, United States
- Houston
Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Carson Brenner
- Department
of Orthopedics, Ohio State University, Wexner
Medical Center, 410 W.
10th Avenue, Columbus, Ohio 43210, United States
| | - Stefano Serpelloni
- Center
for Musculoskeletal Regeneration, Houston
Methodist Research Institute, Houston, Texas 77030, United States
- Houston
Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
- Department
of Electronics, Informatics, and Bioengineering (DEIB), Politecnico di Milano, Milan 20133, Italy
| | - Francesca Paradiso
- Center
for Musculoskeletal Regeneration, Houston
Methodist Research Institute, Houston, Texas 77030, United States
- Houston
Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Patrick McCulloch
- Houston
Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Jason T. Yustein
- Aflac
Cancer and Blood Disorders Center, Emory
University, Atlanta, Georgia 30322, United States
| | - Bradley Weiner
- Center
for Musculoskeletal Regeneration, Houston
Methodist Research Institute, Houston, Texas 77030, United States
- Houston
Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| | - Francesca Taraballi
- Center
for Musculoskeletal Regeneration, Houston
Methodist Research Institute, Houston, Texas 77030, United States
- Houston
Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, Texas 77030, United States
| |
Collapse
|
3
|
Velot É, Balmayor ER, Bertoni L, Chubinskaya S, Cicuttini F, de Girolamo L, Demoor M, Grigolo B, Jones E, Kon E, Lisignoli G, Murphy M, Noël D, Vinatier C, van Osch GJVM, Cucchiarini M. Women's contribution to stem cell research for osteoarthritis: an opinion paper. Front Cell Dev Biol 2023; 11:1209047. [PMID: 38174070 PMCID: PMC10762903 DOI: 10.3389/fcell.2023.1209047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/18/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Émilie Velot
- Laboratory of Molecular Engineering and Articular Physiopathology (IMoPA), French National Centre for Scientific Research, University of Lorraine, Nancy, France
| | - Elizabeth R. Balmayor
- Experimental Orthopaedics and Trauma Surgery, Department of Orthopaedic, Trauma, and Reconstructive Surgery, RWTH Aachen University Hospital, Aachen, Germany
- Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Lélia Bertoni
- CIRALE, USC 957, BPLC, École Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | | | - Flavia Cicuttini
- Musculoskeletal Unit, Monash University and Rheumatology, Alfred Hospital, Melbourne, VIC, Australia
| | - Laura de Girolamo
- IRCCS Ospedale Galeazzi - Sant'Ambrogio, Orthopaedic Biotechnology Laboratory, Milan, Italy
| | - Magali Demoor
- Normandie University, UNICAEN, BIOTARGEN, Caen, France
| | - Brunella Grigolo
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio RAMSES, Bologna, Italy
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Leeds, United Kingdom
| | - Elizaveta Kon
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department ofBiomedical Sciences, Humanitas University, Milan, Italy
| | - Gina Lisignoli
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Immunoreumatologia e Rigenerazione Tissutale, Bologna, Italy
| | - Mary Murphy
- Regenerative Medicine Institute (REMEDI), School of Medicine, University of Galway, Galway, Ireland
| | - Danièle Noël
- IRMB, University of Montpellier, Inserm, CHU Montpellier, Montpellier, France
| | - Claire Vinatier
- Nantes Université, Oniris, INSERM, Regenerative Medicine and Skeleton, Nantes, France
| | - Gerjo J. V. M. van Osch
- Department of Orthopaedics and Sports Medicine and Department of Otorhinolaryngology, Department of Biomechanical Engineering, University Medical Center Rotterdam, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - Magali Cucchiarini
- Center of Experimental Orthopedics, Saarland University and Saarland University Medical Center, Homburg/Saar, Germany
| |
Collapse
|
4
|
Banihashemian A, Benisi SZ, Hosseinzadeh S, Shojaei S. Biomimetic biphasic scaffolds in osteochondral tissue engineering: Their composition, structure and consequences. Acta Histochem 2023; 125:152023. [PMID: 36940532 DOI: 10.1016/j.acthis.2023.152023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/23/2023]
Abstract
Approaches to the design and construction of biomimetic scaffolds for osteochondral tissue, show increasing advances. Considering the limitations of this tissue in terms of repair and regeneration, there is a need to develop appropriately designed scaffolds. A combination of biodegradable polymers especially natural polymers and bioactive ceramics, shows promise in this field. Due to the complicated architecture of this tissue, biphasic and multiphasic scaffolds containing two or more different layers, could mimic the physiology and function of this tissue with a higher degree of similarity. The purpose of this review article is to discuss the approaches focused on the application of biphasic scaffolds for osteochondral tissue engineering, common methods of combining layers and the ultimate consequences of their use in patients were discussed.
Collapse
Affiliation(s)
- Abdolvahab Banihashemian
- Advanced Medical Sciences and Technologies Department, Faculty of Biomedical Engineering, Central Tehran Branch Islamic Azad University, Tehran, Iran.
| | - Soheila Zamanlui Benisi
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | - Simzar Hosseinzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Shahrokh Shojaei
- Islamic Azad University Central Tehran Branch, Department of Biomedical Engineering, Tehran, Iran
| |
Collapse
|
5
|
Vainieri ML, Grad S. Osteochondral Explant Isolation and Culture Under a Compression and Shear Bioreactor. Methods Mol Biol 2023; 2598:325-336. [PMID: 36355302 DOI: 10.1007/978-1-0716-2839-3_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Osteochondral explants harvested from different species are valuable preclinical ex vivo models for tissue engineering research. In this chapter, we describe the isolation of osteochondral plugs from bovine stifle joints, followed by defect creation, and plug preparation in a straightforward manner before mechanical loading using a compression and shear bioreactor. The method can be adapted to isolate osteochondral plugs from any animal species and to load explants in any type of bioreactor.
Collapse
Affiliation(s)
| | - Sibylle Grad
- AO Research Institute Davos, Davos Platz, Switzerland.
| |
Collapse
|
6
|
Bellucci D, Scalzone A, Ferreira AM, Cannillo V, Gentile P. Adhesive Bioinspired Coating for Enhancing Glass-Ceramics Scaffolds Bioactivity. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8080. [PMID: 36431564 PMCID: PMC9699021 DOI: 10.3390/ma15228080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Bioceramic scaffolds, composed of a biphasic composite containing bioactive glass and hydroxyapatite, were prepared in this work to overcome the intrinsic limits of the two components taken separately (in particular, their specific reactivities and dissolution rates, which should be tunable as a function of the given clinical requirements). To mimic the biological environment and tune the different stages of cellular response, a coating with gelatin and chondroitin sulphate via Layer-by-Layer (LbL) assembly was presented and discussed. The resulting functionalized scaffolds were affected by the coating in terms of microstructure and porosity. In addition, the LbL coating significantly enhanced the seeded cell behaviour, with high adhesion, proliferation and osteogenic activity, as revealed by the alkaline phosphatase activity and overexpression of osteopontin and osteocalcin.
Collapse
Affiliation(s)
- Devis Bellucci
- Dipartimento di Ingegneria “Enzo Ferrari”, Università Degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy
| | - Annachiara Scalzone
- School of Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
- Center for Advanced Biomaterials for Health Care@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy
| | - Ana Marina Ferreira
- School of Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
| | - Valeria Cannillo
- Dipartimento di Ingegneria “Enzo Ferrari”, Università Degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy
| | - Piergiorgio Gentile
- School of Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
7
|
Nik Md Noordin Kahar NNF, Ahmad N, Mariatti M, Yahaya BH, Sulaiman AR, Abdul Hamid ZA. A review on bioceramics scaffolds for bone defect in different types of animal models: HA and β -TCP. Biomed Phys Eng Express 2022; 8. [PMID: 35921834 DOI: 10.1088/2057-1976/ac867f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/03/2022] [Indexed: 11/12/2022]
Abstract
Increased life expectancy has led to an increase in the use of bone substitutes in numerous nations, with over two million bone-grafting surgeries performed worldwide each year. A bone defect can be caused by trauma, infections, and tissue resections which can self-heal due to the osteoconductive nature of the native extracellular matrix components. However, natural self-healing is time-consuming, and new bone regeneration is slow, especially for large bone defects. It also remains a clinical challenge for surgeons to have a suitable bone substitute. To date, there are numerous potential treatments for bone grafting, including gold-standard autografts, allograft implantation, xenografts, or bone graft substitutes. Tricalcium phosphate (TCP) and hydroxyapatite (HA) are the most extensively used and studied bone substitutes due to their similar chemical composition to bone. The scaffolds should be testedin vivoandin vitrousing suitable animal models to ensure that the biomaterials work effectively as implants. Hence, this article aims to familiarize readers with the most frequently used animal models for biomaterials testing and highlight the available literature for in vivo studies using small and large animal models. This review summarizes the bio ceramic materials, particularly HA and β-TCP scaffolds, for bone defects in small and large animal models. Besides, the design considerations for the pre-clinical animal model selection for bone defect implants are emphasized and presented.
Collapse
Affiliation(s)
- Nik Nur Farisha Nik Md Noordin Kahar
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia - Kampus Kejuruteraan Seri Ampangan, Transkrian, Nibong Tebal, Seberang Perai Selatan, Nibong Tebal, Pulau Pinang, 14300, MALAYSIA
| | - Nurazreena Ahmad
- Biomaterials Niche Group, School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia - Kampus Kejuruteraan Seri Ampangan, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal 14300 Penang, Malaysia, Nibong Tebal, Pulau Pinang, 14300, MALAYSIA
| | - M Mariatti
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia - Kampus Kejuruteraan Seri Ampangan, Engineering Campus, Universiti Sains Malaysia, 14300 NibongTebal,, Nibong Tebal, Pulau Pinang, 14300, MALAYSIA
| | - Badrul Hisham Yahaya
- Cluster of Regenerative Medicine, Universiti Sains Malaysia Institut Perubatan dan Pengigian Termaju, Bertam, Kepala Batas, Pulau Pinang, 13200, MALAYSIA
| | - Abdul Razak Sulaiman
- Department of Orthopaedics, School of Medical Science, Universiti Sains Malaysia - Kampus Kesihatan, 16150, Kota Bharu, Kelantan, MALAYSIA, Kubang Kerian, Kelantan, 16150, MALAYSIA
| | - Zuratul Ain Abdul Hamid
- School of Materials & Mineral Resources Engineering, Universiti Sains Malayisa, Universiti Sains Malaysia - Engineering Campus Seri Ampangan, Universiti Sains Malaysia, Engineering Campus, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal, 14300, MALAYSIA
| |
Collapse
|
8
|
Xiang Z, Guan X, Ma Z, Shi Q, Panteleev M, Ataullakhanov FI. Bioactive engineered scaffolds based on PCL-PEG-PCL and tumor cell-derived exosomes to minimize the foreign body reaction. BIOMATERIALS AND BIOSYSTEMS 2022; 7:100055. [PMID: 36824486 PMCID: PMC9934494 DOI: 10.1016/j.bbiosy.2022.100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Long-term presence of M1 macrophages causes serious foreign body reaction (FBR), which is the main reason for the failure of biological scaffold integration. Inducing M2 polarization of macrophages near scaffolds to reduce foreign body response has been widely researched. In this work, inspired by the special capability of tumor exosomes in macrophages M2 polarization, we integrate tumor-derived exosomes into biological scaffolds to minimize the FBR. In brief, breast cancer cell-derived exosomes are loaded into polycaprolactone-b-polyethylene glycol-b-polycaprolactone (PCL-PEG-PCL) fiber scaffold through physical adsorption and entrapment to constructed bioactive engineered scaffold. In cellular experiments, we demonstrate bioactive engineered scaffold based on PCL-PEG-PCL and exosomes can promote the transformation of macrophages from M1 to M2 through the PI3K/Akt signaling pathway. In addition, the exosomes release gradually from scaffolds and act on the macrophages around the scaffolds to reduce FBR in a subcutaneous implant mouse model. Compared with PCL-PEG-PCL scaffolds without exosomes, bioactive engineered scaffolds reduce significantly inflammation and fibrosis of tissues around the scaffolds. Therefore, cancer cell-derived exosomes show the potential for constructing engineered scaffolds in inhibiting the excessive inflammation and facilitating tissue formation.
Collapse
Affiliation(s)
- Zehong Xiang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinghua Guan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhifang Ma
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Soochow University, Suzhou 215123, China
| | - Mikhail Panteleev
- Dmitry Rogachev Natl Res Ctr Pediat Hematol Oncol, 1 Samory Mashela St, Moscow, 117198, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow 119991, Russia
| | - Fazly I Ataullakhanov
- Dmitry Rogachev Natl Res Ctr Pediat Hematol Oncol, 1 Samory Mashela St, Moscow, 117198, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, 1, build. 2, GSP-1, Moscow 119991, Russia
| |
Collapse
|
9
|
Machado-Paula MM, Corat MAF, de Vasconcellos LMR, Araújo JCR, Mi G, Ghannadian P, Toniato TV, Marciano FR, Webster TJ, Lobo AO. Rotary Jet-Spun Polycaprolactone/Hydroxyapatite and Carbon Nanotube Scaffolds Seeded with Bone Marrow Mesenchymal Stem Cells Increase Bone Neoformation. ACS APPLIED BIO MATERIALS 2022; 5:1013-1024. [PMID: 35171572 DOI: 10.1021/acsabm.1c00365] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Clinically, bone tissue replacements and/or bone repair are challenging. Strategies based on well-defined combinations of osteoconductive materials and osteogenic cells are promising to improve bone regeneration but still require improvement. Herein, we combined polycaprolactone (PCL) fibers, carbon nanotubes (CNT), and hydroxyapatite (nHap) nanoparticles to develop the next generation of bone regeneration material. Fibers formed by rotary jet spinning (RJS) instead of traditional electrospinning (ES) with embedded bone marrow mesenchymal stem cells (BMMSCs) showed the best outcomes to repair rat calvarial defects after 6 weeks. To understand this, it was observed that different morphologies were formed depending on the manufacturing method used. RJS fibers presented a particular topography with rough fibers, which allowed for better cellular growth and cell spreading in vitro around and into a three-dimensional (3D) mesh, while fibers made by ES were more smooth and cellular growth was only measured on the 3D mesh surface. The fibers with incorporated nHap/CNT nanoparticles enhanced in vitro cell performance as indicated by more cellular proliferation, alkaline phosphatase activity, proliferation, and deposition of calcium. Greater bone neoformation occurred by combining three characteristics: the presence of nHap and CNT nanoparticles, the topography of the RJS fibers, and the addition of BMMSCs. RJS fibers with nanoparticles and seeded with BMMSCs showed 10 136 mm3 of bone neoformation, meaning a 10-fold increase compared to using RJS only and BMMSCs (0.853 mm3) and a 5-fold increase from using ES only (2054 mm3) after 6 weeks of implantation. Conversely, none of these approaches used individually showed any significant difference for in vivo bone neoformation, suggesting that their combination is essential for optimizing bone formation. In summary, our work generated a potential material composed of well-defined combinations of suitable scaffolds seeded with BMMSCs for enhancing numerous orthopedic tissue engineering applications.
Collapse
Affiliation(s)
- Mirian M Machado-Paula
- Institute of Research and Development, University of Vale do Paraiba, São José dos Campos, SP 12244 - 000, Brazil.,Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States.,Multidisciplinary Center for Biological Research, State University of Campinas, Campinas, SP 13083-877, Brazil
| | - Marcus A F Corat
- Multidisciplinary Center for Biological Research, State University of Campinas, Campinas, SP 13083-877, Brazil
| | - Luana M R de Vasconcellos
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Sao Jose dos Campos, Sao Paulo 12245000, Brazil
| | - Juliani C R Araújo
- Department of Bioscience and Oral Diagnosis, Institute of Science and Technology, Sao Paulo State University, Sao Jose dos Campos, Sao Paulo 12245000, Brazil
| | - Gujie Mi
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Paria Ghannadian
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Tatiane V Toniato
- Institute of Research and Development, University of Vale do Paraiba, São José dos Campos, SP 12244 - 000, Brazil
| | - Fernanda R Marciano
- Department of Physics, UFPI - Federal University of Piaui, 64049-550 Teresina, PI, Brazil
| | - Thomas J Webster
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Anderson O Lobo
- Nanomedicine Laboratory, Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States.,LIMAV-Interdisciplinary Laboratory for Advanced Materials, BioMatLab, UFPI - Federal University of Piaui, 64049-550 Teresina, PI, Brazil
| |
Collapse
|
10
|
Gan D, Jiang Y, Hu Y, Wang X, Wang Q, Wang K, Xie C, Han L, Lu X. Mussel-inspired extracellular matrix-mimicking hydrogel scaffold with high cell affinity and immunomodulation ability for growth factor-free cartilage regeneration. J Orthop Translat 2022; 33:120-131. [PMID: 35330942 PMCID: PMC8914478 DOI: 10.1016/j.jot.2022.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 01/08/2023] Open
Abstract
Background Injury to articular cartilage cause certain degree of disability due to poor self-repair ability of cartilage tissue. To promote cartilage regeneration, it is essential to develop a scaffold that properly mimics the native cartilage extracellular matrix (ECM) in the aspect of compositions and functions. Methods A mussel-inspired strategy was developed to construct an ECM-mimicking hydrogel scaffold by incorporating polydopamine-modified hyaluronic acid (PDA/HA) complex into a dual-crosslinked collagen (Col) matrix for growth factor-free cartilage regeneration. The adhesion, proliferation, and chondrogenic differentiation of cells on the scaffold were examined. A well-established full-thickness cartilage defect model of the knee in rabbits was used to evaluated the efficacy and functionality of the engineered Col/PDA/HA hydrogel scaffold. Results The PDA/HA complex incorporated-hydrogel scaffold with catechol moieties exhibited better cell affinity than bare negatively-charged HA incorporated hydrogel scaffold. In addition, the PDA/HA complex endowed the scaffold with immunomodulation ability, which suppressed the expression of inflammatory cytokines and effectively activated the polarization of macrophages toward M2 phenotypes. The in vivo results revealed that the mussel-inspired Col/PDA/HA hydrogel scaffold showed strong cartilage inducing ability to promote cartilage regeneration. Conclusions The PDA/HA complex-incorporated hydrogel scaffold overcame the cell repellency of negatively-charged polysaccharide-based scaffolds, which facilitated the adhesion and clustering of cells on the scaffold, and therefore enhanced cell-HA interactions for efficient chondrogenic differentiation. Moreover, the hydrogel scaffold modulated immune microenvironment, and created a regenerative microenvironment to enhance cartilage regeneration. The translational potential of this article This study gives insight into the mussel-inspired approach to construct the tissue-inducing hydrogel scaffold in a growth-factor-free manner, which show great advantage in the clinical treatment. The hydrogel scaffold composed of collagen and hyaluronic acid as the major component, providing cartilage ECM-mimicking environment, is promising for cartilage defect repair.
Collapse
|
11
|
Bauza‐Mayol G, Quintela M, Brozovich A, Hopson M, Shaikh S, Cabrera F, Shi A, Niclot FB, Paradiso F, Combellack E, Jovic T, Rees P, Tasciotti E, Francis LW, Mcculloch P, Taraballi F. Biomimetic Scaffolds Modulate the Posttraumatic Inflammatory Response in Articular Cartilage Contributing to Enhanced Neoformation of Cartilaginous Tissue In Vivo. Adv Healthc Mater 2022; 11:e2101127. [PMID: 34662505 PMCID: PMC11469755 DOI: 10.1002/adhm.202101127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/28/2021] [Indexed: 12/13/2022]
Abstract
Focal chondral lesions of the knee are the most frequent type of trauma in younger patients and are associated with a high risk of developing early posttraumatic osteoarthritis. The only current clinical solutions include microfracture, osteochondral grafting, and autologous chondrocyte implantation. Cartilage tissue engineering based on biomimetic scaffolds has become an appealing strategy to repair cartilage defects. Here, a chondrogenic collagen-chondroitin sulfate scaffold is tested in an orthotopic Lapine in vivo model to understand the beneficial effects of the immunomodulatory biomaterial on the full chondral defect. Using a combination of noninvasive imaging techniques, histological and whole transcriptome analysis, the scaffolds are shown to enhance the formation of cartilaginous tissue and suppression of host cartilage degeneration, while also supporting tissue integration and increased tissue regeneration over a 12 weeks recovery period. The results presented suggest that biomimetic materials could be a clinical solution for cartilage tissue repair, due to their ability to modulate the immune environment in favor of regenerative processes and suppression of cartilage degeneration.
Collapse
Affiliation(s)
- Guillermo Bauza‐Mayol
- Center for Musculoskeletal RegenerationHouston Methodist Research Institute6670 Bertner Ave.HoustonTX77030USA
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
- Reproductive Biology and Gynaecological Oncology GroupSwansea University Medical SchoolSingleton ParkSwanseaSA2 8PPUK
| | - Marcos Quintela
- Reproductive Biology and Gynaecological Oncology GroupSwansea University Medical SchoolSingleton ParkSwanseaSA2 8PPUK
| | - Ava Brozovich
- Center for Musculoskeletal RegenerationHouston Methodist Research Institute6670 Bertner Ave.HoustonTX77030USA
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
- Texas A&M College of MedicineBryanTX77807USA
| | - Michael Hopson
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
| | - Shazad Shaikh
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
| | - Fernando Cabrera
- Center for Musculoskeletal RegenerationHouston Methodist Research Institute6670 Bertner Ave.HoustonTX77030USA
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
| | - Aaron Shi
- Center for Musculoskeletal RegenerationHouston Methodist Research Institute6670 Bertner Ave.HoustonTX77030USA
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
| | - Federica Banche Niclot
- Center for Musculoskeletal RegenerationHouston Methodist Research Institute6670 Bertner Ave.HoustonTX77030USA
- Polytechnic of TurinDepartment of Applied Science and TechnologyCorso Duca degli Abruzzi 24Torino10129Italy
| | - Francesca Paradiso
- Center for Musculoskeletal RegenerationHouston Methodist Research Institute6670 Bertner Ave.HoustonTX77030USA
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
- Reproductive Biology and Gynaecological Oncology GroupSwansea University Medical SchoolSingleton ParkSwanseaSA2 8PPUK
| | - Emman Combellack
- Reconstructive Surgery and Regenerative Medicine Research GroupSwansea University Medical SchoolSingleton ParkSwanseaSA2 8PPUK
| | - Tom Jovic
- Reconstructive Surgery and Regenerative Medicine Research GroupSwansea University Medical SchoolSingleton ParkSwanseaSA2 8PPUK
| | - Paul Rees
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
| | | | - Lewis W. Francis
- Center for Musculoskeletal RegenerationHouston Methodist Research Institute6670 Bertner Ave.HoustonTX77030USA
| | - Patrick Mcculloch
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
| | - Francesca Taraballi
- Center for Musculoskeletal RegenerationHouston Methodist Research Institute6670 Bertner Ave.HoustonTX77030USA
- Orthopedics & Sports MedicineHouston Methodist Hospital6550 Fannin St.HoustonTX77030USA
| |
Collapse
|
12
|
Brozovich AA, Lenna S, Paradiso F, Serpelloni S, McCulloch P, Weiner B, Yustein JT, Taraballi F. Osteogenesis in the presence of chemotherapy: A biomimetic approach. J Tissue Eng 2022; 13:20417314221138945. [PMID: 36451687 PMCID: PMC9703557 DOI: 10.1177/20417314221138945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/29/2022] [Indexed: 07/13/2024] Open
Abstract
Osteosarcoma (OS) is the most common bone tumor in pediatrics. After resection, allografts or metal endoprostheses reconstruct bone voids, and systemic chemotherapy is used to prevent recurrence. This urges the development of novel treatment options for the regeneration of bone after excision. We utilized a previously developed biomimetic, biodegradable magnesium-doped hydroxyapatite/type I collagen composite material (MHA/Coll) to promote bone regeneration in the presence of chemotherapy. We also performed experiments to determine if human mesenchymal stem cells (hMSCs) seeded on MHA/Coll scaffold migrate less toward OS cells, suggesting that hMSCs will not contribute to tumor growth and therefore the potential of oncologic safety in vitro. Also, hMSCs seeded on MHA/Coll had increased expression of osteogenic genes (BGLAP, SPP1, ALP) compared to hMSCs in the 2D condition, even when exposed to chemotherapeutics. This is the first study to demonstrate that a highly osteogenic scaffold can potentially be oncologically safe because hMSCs on MHA/Coll tend to differentiate and lose the ability to migrate toward tumor cells. Therefore, hMSCs on MHA/Coll could potentially be utilized for bone regeneration after OS excision.
Collapse
Affiliation(s)
- Ava A Brozovich
- Texas A&M College of Medicine, Bryan, TX, USA
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Stefania Lenna
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Francesca Paradiso
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
- Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Singleton Park, Swansea, UK
| | - Stefano Serpelloni
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
- Politecnico di Milano, Department of Electronics, Informatics, and Bioengineering (DEIB), Milan, Italy
| | - Patrick McCulloch
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Bradley Weiner
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Jason T Yustein
- Texas Children’s Cancer and Hematology Center and The Faris D. Virani Ewing Sarcoma Center, Baylor College of Medicine, Houston, TX, USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston, TX, USA
- Houston Methodist Orthopedics & Sports Medicine, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
13
|
Klimak M, Nims RJ, Pferdehirt L, Collins KH, Harasymowicz NS, Oswald SJ, Setton LA, Guilak F. Immunoengineering the next generation of arthritis therapies. Acta Biomater 2021; 133:74-86. [PMID: 33823324 DOI: 10.1016/j.actbio.2021.03.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/08/2021] [Accepted: 03/25/2021] [Indexed: 12/15/2022]
Abstract
Immunoengineering continues to revolutionize healthcare, generating new approaches for treating previously intractable diseases, particularly in regard to cancer immunotherapy. In joint diseases, such as osteoarthritis (OA) and rheumatoid arthritis (RA), biomaterials and anti-cytokine treatments have previously been at that forefront of therapeutic innovation. However, while many of the existing anti-cytokine treatments are successful for a subset of patients, these treatments can also pose severe risks, adverse events and off-target effects due to continuous delivery at high dosages or a lack of disease-specific targets. The inadequacy of these current treatments has motivated the development of new immunoengineering strategies that offer safer and more efficacious alternative therapies through the precise and controlled targeting of specific upstream immune responses, including direct and mechanistically-driven immunoengineering approaches. Advances in the understanding of the immunomodulatory pathways involved in musculoskeletal disease, in combination with the growing emphasis on personalized medicine, stress the need for carefully considering the delivery strategies and therapeutic targets when designing therapeutics to better treat RA and OA. Here, we focus on recent advances in biomaterial and cell-based immunomodulation, in combination with genetic engineering, for therapeutic applications in joint diseases. The application of immunoengineering principles to the study of joint disease will not only help to elucidate the mechanisms of disease pathogenesis but will also generate novel disease-specific therapeutics by harnessing cellular and biomaterial responses. STATEMENT OF SIGNIFICANCE: It is now apparent that joint diseases such as osteoarthritis and rheumatoid arthritis involve the immune system at both local (i.e., within the joint) and systemic levels. In this regard, targeting the immune system using both biomaterial-based or cellular approaches may generate new joint-specific treatment strategies that are well-controlled, safe, and efficacious. In this review, we focus on recent advances in immunoengineering that leverage biomaterials and/or genetically engineered cells for therapeutic applications in joint diseases. The application of such approaches, especially synergistic strategies that target multiple immunoregulatory pathways, has the potential to revolutionize our understanding, treatment, and prevention of joint diseases.
Collapse
Affiliation(s)
- Molly Klimak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Robert J Nims
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Lara Pferdehirt
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Kelsey H Collins
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Natalia S Harasymowicz
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Sara J Oswald
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Lori A Setton
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospitals for Children - St. Louis, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
14
|
Chondrogenic Potential of Human Dental Pulp Stem Cells Cultured as Microtissues. Stem Cells Int 2021; 2021:7843798. [PMID: 34539791 PMCID: PMC8443354 DOI: 10.1155/2021/7843798] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/22/2021] [Accepted: 08/16/2021] [Indexed: 11/18/2022] Open
Abstract
Several tissue engineering stem cell-based procedures improve hyaline cartilage repair. In this work, the chondrogenic potential of dental pulp stem cell (DPSC) organoids or microtissues was studied. After several weeks of culture in proliferation or chondrogenic differentiation media, synthesis of aggrecan and type II and I collagen was immunodetected, and SOX9, ACAN, COL2A1, and COL1A1 gene expression was analysed by real-time RT-PCR. Whereas microtissues cultured in proliferation medium showed the synthesis of aggrecan and type II and I collagen at the 6th week of culture, samples cultured in chondrogenic differentiation medium showed an earlier and important increase in the synthesis of these macromolecules after 4 weeks. Gene expression analysis showed a significant increase of COL2A1 after 3 days of culture in chondrogenic differentiation medium, while COL1A1 was highly expressed after 14 days. Cell-cell proximity promotes the chondrogenic differentiation of DPSCs and important synthesis of hyaline chondral macromolecules.
Collapse
|
15
|
Hu H, Liu W, Sun C, Wang Q, Yang W, Zhang Z, Xia Z, Shao Z, Wang B. Endogenous Repair and Regeneration of Injured Articular Cartilage: A Challenging but Promising Therapeutic Strategy. Aging Dis 2021; 12:886-901. [PMID: 34094649 PMCID: PMC8139200 DOI: 10.14336/ad.2020.0902] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022] Open
Abstract
Articular cartilage (AC) has a very limited intrinsic repair capacity after injury or disease. Although exogenous cell-based regenerative approaches have obtained acceptable outcomes, they are usually associated with complicated procedures, donor-site morbidities and cell differentiation during ex vivo expansion. In recent years, endogenous regenerative strategy by recruiting resident mesenchymal stem/progenitor cells (MSPCs) into the injured sites, as a promising alternative, has gained considerable attention. It takes full advantage of body's own regenerative potential to repair and regenerate injured tissue while avoiding exogenous regenerative approach-associated limitations. Like most tissues, there are also multiple stem-cell niches in AC and its surrounding tissues. These MSPCs have the potential to migrate into injured sites to produce replacement cells under appropriate stimuli. Traditional microfracture procedure employs the concept of MSPCs recruitment usually fails to regenerate normal hyaline cartilage. The reasons for this failure might be attributed to an inadequate number of recruiting cells and adverse local tissue microenvironment after cartilage injury. A strategy that effectively improves local matrix microenvironment and recruits resident MSPCs may enhance the success of endogenous AC regeneration (EACR). In this review, we focused on the reasons why AC cannot regenerate itself in spite of potential self-repair capacity and summarized the latest developments of the three key components in the field of EACR. In addition, we discussed the challenges facing in the present EACR strategy. This review will provide an increasing understanding of EACR and attract more researchers to participate in this promising research arena.
Collapse
Affiliation(s)
- Hongzhi Hu
- 1Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Weijian Liu
- 1Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Caixia Sun
- 2Department of Gynecology, General Hospital of the Yangtze River Shipping, Wuhan 430022, China
| | - Qiuyuan Wang
- 3Department of Nephrology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang 441100, China
| | - Wenbo Yang
- 1Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - ZhiCai Zhang
- 1Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhidao Xia
- 4Centre for Nanohealth, ILS2, Swansea university Medical school, Swansea, SA2 8PP, UK
| | - Zengwu Shao
- 1Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Baichuan Wang
- 1Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.,4Centre for Nanohealth, ILS2, Swansea university Medical school, Swansea, SA2 8PP, UK
| |
Collapse
|
16
|
Oroojalian F, Beygi M, Baradaran B, Mokhtarzadeh A, Shahbazi MA. Immune Cell Membrane-Coated Biomimetic Nanoparticles for Targeted Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006484. [PMID: 33577127 DOI: 10.1002/smll.202006484] [Citation(s) in RCA: 209] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Nanotechnology has provided great opportunities for managing neoplastic conditions at various levels, from preventive and diagnostic to therapeutic fields. However, when it comes to clinical application, nanoparticles (NPs) have some limitations in terms of biological stability, poor targeting, and rapid clearance from the body. Therefore, biomimetic approaches, utilizing immune cell membranes, are proposed to solve these issues. For example, macrophage or neutrophil cell membrane coated NPs are developed with the ability to interact with tumor tissue to suppress cancer progression and metastasis. The functionality of these particles largely depends on the surface proteins of the immune cells and their preserved function during membrane extraction and coating process on the NPs. Proteins on the outer surface of immune cells can render a wide range of activities to the NPs, including prolonged blood circulation, remarkable competency in recognizing antigens for enhanced targeting, better cellular interactions, gradual drug release, and reduced toxicity in vivo. In this review, nano-based systems coated with immune cells-derived membranous layers, their detailed production process, and the applicability of these biomimetic systems in cancer treatment are discussed. In addition, future perspectives and challenges for their clinical translation are also presented.
Collapse
Affiliation(s)
- Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran
| | - Mohammad Beygi
- Department of Agricultural Engineering, Isfahan University of Technology (IUT), Isfahan, 84156-83111, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 51666-14731, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, 51666-14731, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| |
Collapse
|
17
|
Trengove A, Di Bella C, O'Connor AJ. The Challenge of Cartilage Integration: Understanding a Major Barrier to Chondral Repair. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:114-128. [PMID: 33307976 DOI: 10.1089/ten.teb.2020.0244] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Articular cartilage defects caused by injury frequently lead to osteoarthritis, a painful and costly disease. Despite widely used surgical methods to treat articular cartilage defects and a plethora of research into regenerative strategies as treatments, long-term clinical outcomes are not satisfactory. Failure to integrate repair tissue with native cartilage is a recurring issue in surgical and tissue-engineered strategies, seeing eventual degradation of the regenerated or surrounding tissue. This review delves into the current understanding of why continuous and robust integration with native cartilage is so difficult to achieve. Both the intrinsic limitations of chondrocytes to remodel injured cartilage, and the significant challenges posed by a compromised biomechanical environment are described. Recent scaffold and cell-based techniques to repair cartilage are also discussed, and limitations of existing methods to evaluate integrative repair. In particular, the importance of evaluating the mechanical integrity of the interface between native and repair tissue is highlighted as a meaningful assessment of any strategy to repair this load-bearing tissue. Impact statement The failure to integrate grafts or biomaterials with native cartilage is a major barrier to cartilage repair. An in-depth understanding of the reasons cartilage integration remains a challenge is required to inform cartilage repair strategies. In particular, this review highlights that integration of cartilage repair strategies is frequently assessed in terms of the continuity of tissue, but not the mechanical integrity. Given the load-bearing nature of cartilage, evaluating integration in terms of interfacial strength is essential to assessing the potential success of cartilage repair methods.
Collapse
Affiliation(s)
- Anna Trengove
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - Claudia Di Bella
- Department of Surgery, St. Vincent's Hospital, The University of Melbourne, Melbourne, Australia.,Department of Orthopedics, St. Vincent's Hospital Melbourne, Melbourne, Australia
| | - Andrea J O'Connor
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
18
|
Rogina A, Pušić M, Štefan L, Ivković A, Urlić I, Ivanković M, Ivanković H. Characterization of Chitosan-Based Scaffolds Seeded with Sheep Nasal Chondrocytes for Cartilage Tissue Engineering. Ann Biomed Eng 2021; 49:1572-1586. [PMID: 33409853 DOI: 10.1007/s10439-020-02712-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022]
Abstract
The treatment of cartilage defect remains a challenging issue in clinical practice. Chitosan-based materials have been recognized as a suitable microenvironment for chondrocyte adhesion, proliferation and differentiation forming articular cartilage. The use of nasal chondrocytes to culture articular cartilage on an appropriate scaffold emerged as a promising novel strategy for cartilage regeneration. Beside excellent properties, chitosan lacks in biological activity, such as RGD-sequences. In this work, we have prepared pure and protein-modified chitosan scaffolds of different deacetylation degree and molecular weight as platforms for the culture of sheep nasal chondrocytes. Fibronectin (FN) was chosen as an adhesive protein for the improvement of chitosan bioactivity. Prepared scaffolds were characterised in terms of microstructure, physical and biodegradation properties, while FN interactions with different chitosans were investigated through adsorption-desorption studies. The results indicated faster enzymatic degradation of chitosan scaffolds with lower deacetylation degree, while better FN interactions with material were achieved on chitosan with higher number of amine groups. Histological and immunohistochemical analysis of in vitro engineered cartilage grafts showed presence of hyaline cartilage produced by nasal chondrocytes.
Collapse
Affiliation(s)
- Anamarija Rogina
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10001, Zagreb, Croatia.
| | - Maja Pušić
- Faculty of Science, University of Zagreb, Horvatovac102a, 10001, Zagreb, Croatia.
| | - Lucija Štefan
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10001, Zagreb, Croatia
| | - Alan Ivković
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Šalata 3, 10001, Zagreb, Croatia
- Department of Orthopaedic Surgery, University Hospital Sveti Duh, Sveti Duh 64, 10001, Zagreb, Croatia
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000, Rijeka, Croatia
- University of Applied Health Sciences, Mlinarska cesta 38, 10001, Zagreb, Croatia
| | - Inga Urlić
- Faculty of Science, University of Zagreb, Horvatovac102a, 10001, Zagreb, Croatia
| | - Marica Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10001, Zagreb, Croatia
| | - Hrvoje Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, p.p.177, 10001, Zagreb, Croatia
| |
Collapse
|
19
|
Farooqi AR, Zimmermann J, Bader R, van Rienen U. Computational study on electromechanics of electroactive hydrogels for cartilage-tissue repair. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 197:105739. [PMID: 32950923 DOI: 10.1016/j.cmpb.2020.105739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE The self-repair capability of articular cartilage is limited because of non-vascularization and low turnover of its extracellular matrix. Regenerating hyaline cartilage remains a significant clinical challenge as most non-surgical and surgical treatments provide only mid-term relief. Eventually, further pain and mobility loss occur for many patients in the long run due to further joint deterioration. Repair of articular cartilage tissue using electroactive scaffolds and biophysical stimuli like electrical and osmotic stimulation may have the potential to heal cartilage defects occurring due to trauma, osteoarthritis, or sport-related injuries. Therefore, the focus of the current study is to present a computational model of electroactive hydrogels for the cartilage-tissue repair as a first step towards an optimized experimental design. METHODS The multiphysics transport model that mainly includes the Poisson-Nernst-Planck equations and the mechanical equation is used to find the electrical stimulation response of the polyelectrolyte hydrogels. Based upon this, a numerical model on electromechanics of electroactive hydrogels seeded with chondrocytes is presented employing the open-source software FEniCS, which is a Python library for finite-element analysis. RESULTS We analyzed the ionic concentrations and electric potential in a hydrogel sample and the cell culture medium, the osmotic pressure created due to ionic concentration variations and the resulting hydrogel displacement. The proposed mathematical model was validated with examples from literature. CONCLUSIONS The presented model for the electrical and osmotic stimulation of a hydrogel sample can serve as a useful tool for the development and analysis of a cartilaginous scaffold employing electrical stimulation. By analyzing various parameters, we pave the way for future research on a finer scale using open-source software.
Collapse
Affiliation(s)
- Abdul Razzaq Farooqi
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Albert Einstein Str. 2, Rostock 18059, Germany; Department of Electronic Engineering, Faculty of Engineering, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Julius Zimmermann
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Albert Einstein Str. 2, Rostock 18059, Germany
| | - Rainer Bader
- Department of Orthopaedics, University Medical Center Rostock, Rostock 18057, Germany; Department Life, Light & Matter, University of Rostock, Rostock 18051, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Albert Einstein Str. 2, Rostock 18059, Germany; Department Life, Light & Matter, University of Rostock, Rostock 18051, Germany
| |
Collapse
|
20
|
Zhang LY, Bi Q, Zhao C, Chen JY, Cai MH, Chen XY. Recent Advances in Biomaterials for the Treatment of Bone Defects. Organogenesis 2020; 16:113-125. [PMID: 32799735 DOI: 10.1080/15476278.2020.1808428] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bone defects or fractures generally heal in the absence of major interventions due to the high regenerative capacity of bone tissue. However, in situations of severe/large bone defects, these orchestrated regeneration mechanisms are impaired. With advances in modern medicine, natural and synthetic bio-scaffolds from bioceramics and polymers that support bone growth have emerged and gained intense research interest. In particular, scaffolds that recapitulate the molecular cues of extracellular signals, particularly growth factors, offer potential as therapeutic bone biomaterials. The current challenges for these therapies include the ability to engineer materials that mimic the biological and mechanical properties of the real bone tissue matrix, whilst simultaneously supporting bone vascularization. In this review, we discuss the very recent innovative strategies in bone biomaterial technology, including those of endogenous biomaterials and cell/drug delivery systems that promote bone regeneration. We present our understanding of their current value and efficacy, and the future perspectives for bone regenerative medicine.
Collapse
Affiliation(s)
- Le-Yi Zhang
- Department of General Surgery, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital Chun'an Branch) , Hangzhou, Zhejiang Province, China
| | - Qing Bi
- Department of Orthopedics, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) , Hangzhou, China
| | - Chen Zhao
- Department of Orthopedics, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) , Hangzhou, China
| | - Jin-Yang Chen
- Research and Development Department, Zhejiang Healthfuture Institute for Cell-Based Applied Technology , Hangzhou, Zhejiang Province, China
| | - Mao-Hua Cai
- Department of General Surgery, Chun'an First People's Hospital (Zhejiang Provincial People's Hospital Chun'an Branch) , Hangzhou, Zhejiang Province, China
| | - Xiao-Yi Chen
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) , Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital (People's Hospital of Hangzhou Medical College) , Hangzhou, China
| |
Collapse
|
21
|
Vainieri ML, Alini M, Yayon A, van Osch GJVM, Grad S. Mechanical Stress Inhibits Early Stages of Endogenous Cell Migration: A Pilot Study in an Ex Vivo Osteochondral Model. Polymers (Basel) 2020; 12:polym12081754. [PMID: 32781503 PMCID: PMC7466115 DOI: 10.3390/polym12081754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/25/2020] [Accepted: 08/03/2020] [Indexed: 01/07/2023] Open
Abstract
Cell migration has a central role in osteochondral defect repair initiation and biomaterial-mediated regeneration. New advancements to reestablish tissue function include biomaterials and factors promoting cell recruitment, differentiation and tissue integration, but little is known about responses to mechanical stimuli. In the present pilot study, we tested the influence of extrinsic forces in combination with biomaterials releasing chemoattractant signals on cell migration. We used an ex vivo mechanically stimulated osteochondral defect explant filled with fibrin/hyaluronan hydrogel, in presence or absence of platelet-derived growth factor-BB or stromal cell-derived factor 1, to assess endogenous cell recruitment into the wound site. Periodic mechanical stress at early time point negatively influenced cell infiltration compared to unloaded samples, and the implementation of chemokines to increase cell migration was not efficient to overcome this negative effect. The gene expression at 15 days of culture indicated a marked downregulation of matrix metalloproteinase (MMP)13 and MMP3, a decrease of β1 integrin and increased mRNA levels of actin in osteochondral samples exposed to complex load. This work using an ex vivo osteochondral mechanically stimulated advanced platform demonstrated that recurrent mechanical stress at early time points impeded cell migration into the hydrogel, providing a unique opportunity to improve our understanding on management of joint injury.
Collapse
Affiliation(s)
- Maria L. Vainieri
- AO Research Institute Davos, 7270 Davos, Switzerland; (M.L.V.); (M.A.)
- Department of Orthopaedics, Erasmus MC, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands;
| | - Mauro Alini
- AO Research Institute Davos, 7270 Davos, Switzerland; (M.L.V.); (M.A.)
| | - Avner Yayon
- ProCore Ltd., Weizmann Science Park, 7 Golda Meir St., Ness Ziona 70400, Israel;
| | - Gerjo J. V. M. van Osch
- Department of Orthopaedics, Erasmus MC, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands;
- Department of Otorhinolaryngology, Erasmus MC, University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands
- Department of Biomedical Engineering, University of Technology Delft, 2628 CD Delft, The Netherlands
| | - Sibylle Grad
- AO Research Institute Davos, 7270 Davos, Switzerland; (M.L.V.); (M.A.)
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence: ; Tel.: +41-81-4142480
| |
Collapse
|
22
|
Liu Q, Wen Y, Qiu J, Zhang Z, Jin Z, Cao M, Jiao Y, Yang H. Local SDF-1α application enhances the therapeutic efficacy of BMSCs transplantation in osteoporotic bone healing. Heliyon 2020; 6:e04347. [PMID: 32637715 PMCID: PMC7330617 DOI: 10.1016/j.heliyon.2020.e04347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/22/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023] Open
Abstract
Bone defect healing is markedly impaired in osteoporotic patient due to poor bone regeneration ability. Stromal cell derived factor-1α (SDF-1α) plays a pivotal role in the repair of various injured tissues including bone. Here, we definite that SDF-1α hydrogels potentiates in vivo osteogenesis of bone marrow-derived stromal stem cells (BMSCs) in osteoporosis. The characteristics of rat primary BMSCs including superficial markers by flow cytometry and multi-lineage differentiation by induction were determined. At different time intervals, the release media from the SDF-1α-releasing hydrogels were collected to identificate SDF-1α exhibited a sustained release profile and maintained its bioactivity after release from the hydrogels to stimulate chemotaxis of BMSCs in a time dependent manner. Bilateral alveolar defects were operated in ovariectomized (OVX) rats and repaired with systemic BMSCs transplantation with or without the hydrogels. Local administration of SDF-1α significantly enhanced BMSCs recruitment and promoted more bone regeneration as well as the expression of OCN and Runx2 compared with the effect of BMSCs transplantation alone. Moreover, after BMSCs transplantation with SDF-1α delivery, macrophage polarization was promoted toward the M2 phenotype, that is identified as an important symbol in tissue regeneration process. Taken together, local SDF-1α application enhances the efficacy of BMSCs transplantation therapy in osteoporotic bone healing, suggesting clinical potential of SDF-1α to serve as a therapeutic drug target for osteoporosis treatment.
Collapse
Affiliation(s)
- Qian Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease & Shaanxi Key Laboratory of Oral Disease, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yi Wen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease & Shaanxi Key Laboratory of Oral Disease, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jun Qiu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Zhaoyichun Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Zuolin Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease & Shaanxi Key Laboratory of Oral Disease, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Meng Cao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Disease & Shaanxi Key Laboratory of Oral Disease, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yang Jiao
- Department of Stomatology, The 7th Medical Center of PLA General Hospital, Beijing, China
| | - Hongxu Yang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Department of Oral Anatomy and Physiology and TMD, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
23
|
Mahammod BP, Barua E, Deb P, Deoghare AB, Pandey KM. Investigation of Physico-mechanical Behavior, Permeability and Wall Shear Stress of Porous HA/PMMA Composite Bone Scaffold. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04467-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Vainieri ML, Lolli A, Kops N, D'Atri D, Eglin D, Yayon A, Alini M, Grad S, Sivasubramaniyan K, van Osch GJVM. Evaluation of biomimetic hyaluronic-based hydrogels with enhanced endogenous cell recruitment and cartilage matrix formation. Acta Biomater 2020; 101:293-303. [PMID: 31726249 DOI: 10.1016/j.actbio.2019.11.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 01/17/2023]
Abstract
Biomaterials play a pivotal role in cell-free cartilage repair approaches, where cells must migrate through the scaffold, fill the defect, and then proliferate and differentiate facilitating tissue remodeling. Here we used multiple assays to test the influence of chemokines and growth factors on cell migration and cartilage repair in two different hyaluronan (HA)-based hydrogels. We first investigated bone marrow Mesenchymal Stromal Cells (BMSC) migration in vitro, in response to different concentrations of platelet-derived growth factor-BB (PDGF-BB), chemokine ligand 5 (CCL5/RANTES) and stromal cell-derived factor 1 (SDF-1), using a 3D spheroid-based assay. PDGF-BB was selected as most favourable chemotactic agent, and MSC migration was assessed in the context of physical impediment to cell recruitment by testing Fibrin-HA and HA-Tyramine hydrogels of different cross-linking densities. Supplementation of PDGF-BB stimulated progressive migration of MSC through the gels over time. We then investigated in situ cell migration into the hydrogels with and without PDGF-BB, using a cartilage-bone explant model implanted subcutaneously in athymic mice. In vivo studies show that when placed into an osteochondral defect, both hydrogels supported endogenous cell infiltration and provided an amenable microenvironment for cartilage production. These processes were best supported in Fibrin-HA hydrogel in the absence of PDGF-BB. This study used an advanced preclinical testing platform to select an appropriate microenvironment provided by implanted hydrogels, demonstrating that HA-based hydrogels can promote the initial and critical step of endogenous cell recruitment and circumvent some of the clinical challenges in cartilage tissue repair. STATEMENT OF SIGNIFICANCE: The challenge of articular cartilage repair arises from its complex structure and architecture, which confers the unique mechanical behavior of the extracellular matrix. The aim of our research is to identify biomaterials for implants that can support migration of endogenous stem and progenitor cell populations from cartilage and bone tissue, in order to permanently replace damaged cartilage with the original hyaline structure. Here, we present an in vitro 3D spheroid-based migration assay and an osteochondral defect model, which provide the opportunity to assess biomaterials and biomolecules, and to get stronger experimental evidence of the not well-characterized dynamic process of endogenous cells colonization in an osteochondral defect. Furthermore, the delicate step of early cell migration into biomaterials towards functional tissue engineering is reproduced. These tests can be used for pre-clinical testing of newly developed material designs in the field of scaffold engineering.
Collapse
Affiliation(s)
- M L Vainieri
- AO Research Institute Davos, Davos Platz, Switzerland; Department of Orthopeadics, Erasmus MC, University Medical Center, CN Rotterdam, the Netherlands.
| | - A Lolli
- Department of Orthopeadics, Erasmus MC, University Medical Center, CN Rotterdam, the Netherlands.
| | - N Kops
- Department of Orthopeadics, Erasmus MC, University Medical Center, CN Rotterdam, the Netherlands.
| | - D D'Atri
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| | - D Eglin
- AO Research Institute Davos, Davos Platz, Switzerland.
| | - A Yayon
- ProCore Ltd., Weizmann Science Park, 7 Golda Meir St., Ness Ziona 70400, Israel.
| | - M Alini
- AO Research Institute Davos, Davos Platz, Switzerland.
| | - S Grad
- AO Research Institute Davos, Davos Platz, Switzerland.
| | - K Sivasubramaniyan
- Department of Orthopeadics, Erasmus MC, University Medical Center, CN Rotterdam, the Netherlands.
| | - G J V M van Osch
- Department of Orthopeadics, Erasmus MC, University Medical Center, CN Rotterdam, the Netherlands; Department of Otorhinolaryngology, Erasmus MC, University Medical Center, CN Rotterdam, the Netherlands.
| |
Collapse
|
25
|
Taraballi F, Pastò A, Bauza G, Varner C, Amadori A, Tasciotti E. Immunomodulatory potential of mesenchymal stem cell role in diseases and therapies: A bioengineering prospective. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.regen.2019.100017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Kajitani N, Yamada T, Kawakami K, Matsumoto KI. TNX deficiency results in bone loss due to an increase in multinucleated osteoclasts. Biochem Biophys Res Commun 2019; 512:659-664. [PMID: 30922562 DOI: 10.1016/j.bbrc.2019.03.134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
Abstract
Tenascin-X (TNX), a glycoprotein of the extracellular matrix (ECM), is expressed in various tissues and plays an important role in ECM architecture. The TNXB gene encoding TNX is known as the gene responsible for classic-like Ehlers-Danlos syndrome (clEDS). To date, the role of TNX in dermal, muscular and obstetric features has been reported, but its role in bone homeostasis remains to be clarified. In this study, we found significant bone loss and upregulation of osteoclast marker gene expression in TNX-deficient mice. Further, TNX deficiency in the bone marrow promoted multinucleation of osteoclasts and resulted in increased bone resorption activity. These results indicate that multinucleated osteoclasts are the cause of bone loss in a TNX-deficient environment. Our findings provide new insight into the mechanism of osteoclast differentiation mediated by TNX and the pathology of clEDS.
Collapse
Affiliation(s)
- Naoyo Kajitani
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan; Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Takaya Yamada
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Kohei Kawakami
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| | - Ken-Ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, 89-1 Enya-cho, Izumo, Shimane, 693-8501, Japan.
| |
Collapse
|
27
|
Nürnberger S, Schneider C, van Osch G, Keibl C, Rieder B, Monforte X, Teuschl A, Mühleder S, Holnthoner W, Schädl B, Gahleitner C, Redl H, Wolbank S. Repopulation of an auricular cartilage scaffold, AuriScaff, perforated with an enzyme combination. Acta Biomater 2019; 86:207-222. [PMID: 30590183 DOI: 10.1016/j.actbio.2018.12.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 12/21/2022]
Abstract
Biomaterials currently in use for articular cartilage regeneration do not mimic the composition or architecture of hyaline cartilage, leading to the formation of repair tissue with inferior characteristics. In this study we demonstrate the use of "AuriScaff", an enzymatically perforated bovine auricular cartilage scaffold, as a novel biomaterial for repopulation with regenerative cells and for the formation of high-quality hyaline cartilage. AuriScaff features a traversing channel network, generated by selective depletion of elastic fibers, enabling uniform repopulation with therapeutic cells. The complex collagen type II matrix is left intact, as observed by immunohistochemistry, SEM and TEM. The compressive modulus is diminished, but three times higher than in the clinically used collagen type I/III scaffold that served as control. Seeding tests with human articular chondrocytes (hAC) alone and in co-culture with human adipose-derived stromal/stem cells (ASC) confirmed that the network enabled cell migration throughout the scaffold. It also guides collagen alignment along the channels and, due to the generally traverse channel alignment, newly deposited cartilage matrix corresponds with the orientation of collagen within articular cartilage. In an osteochondral plug model, AuriScaff filled the complete defect with compact collagen type II matrix and enabled chondrogenic differentiation inside the channels. Using adult articular chondrocytes from bovine origin (bAC), filling of even deep defects with high-quality hyaline-like cartilage was achieved after 6 weeks in vivo. With its composition and spatial organization, AuriScaff provides an optimal chondrogenic environment for therapeutic cells to treat cartilage defects and is expected to improve long-term outcome by channel-guided repopulation followed by matrix deposition and alignment. STATEMENT OF SIGNIFICANCE: After two decades of tissue engineering for cartilage regeneration, there is still no optimal strategy available to overcome problems such as inconsistent clinical outcome, early and late graft failures. Especially large defects are dependent on biomaterials and their scaffolding, guiding and protective function. Considering the currently used biomaterials, structure and mechanical properties appear to be insufficient to fulfill this task. The novel scaffold developed within this study is the first approach enabling the use of dense cartilage matrix, repopulate it via channels and provide the cells with a compact collagen type II environment. Due to its density, it also provides better mechanical properties than materials currently used in clinics. We therefore think, that the auricular cartilage scaffold (AuriScaff) has a high potential to improve future cartilage regeneration approaches.
Collapse
|
28
|
Yin H, Wang Y, Sun X, Cui G, Sun Z, Chen P, Xu Y, Yuan X, Meng H, Xu W, Wang A, Guo Q, Lu S, Peng J. Functional tissue-engineered microtissue derived from cartilage extracellular matrix for articular cartilage regeneration. Acta Biomater 2018; 77:127-141. [PMID: 30030172 DOI: 10.1016/j.actbio.2018.07.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/13/2018] [Accepted: 07/16/2018] [Indexed: 12/21/2022]
Abstract
We developed a promising cell carrier prepared from articular cartilage slices, designated cartilage extracellular matrix (ECM)-derived particles (CEDPs), through processes involving physical pulverization, size screening, and chemical decellularization. Rabbit articular chondrocytes (ACs) or adipose-derived stem cells (ASCs) rapidly attached to the surface of the CEDPs and proliferated with high cell viability under microgravity (MG) condition in a rotary cell culture system (RCCS) or static condition. Gene profiling results demonstrated that ACs expanded on CEDPs exhibited significantly enhanced chondrogenic phenotypes compared with monolayer culture, and that ASCs differentiated into a chondrogenic phenotype without the use of exogenous growth factors. Moreover, MG culture conditions in a RCCS bioreactor were superior to static culture conditions in terms of maintaining the chondrogenic phenotype of ACs and inducing ACS chondrogenesis. With prolonged expansion, functional microtissue aggregates of AC- or ASC-laden CEDPs were formed. Further, AC- or ASC-based microtissues were directly implanted in vivo to repair articular osteochondral defects in a rabbit model. Histological results, biomechanical evaluations, and radiographic assessments indicated that AC- and ASC-based microtissues displayed equal levels of superior hyaline cartilage repair, whereas the other two treatment groups, in which osteochondral defects were treated with CEDPs alone or fibrin glue, exhibited primarily fibrous tissue repair. These findings provide an alternative method for cell culture and stem cell differentiation and a promising strategy for constructing tissue-engineered cartilage microtissues for cartilage regeneration. STATEMENT OF SIGNIFICANCE Despite the remarkable progress in cartilage tissue engineering, cartilage repair still remains elusive. In the present study, we developed a cell carrier, namely cartilage extracellular matrix-derived particles (CEDPs), for cell proliferation of articular chondrocytes (ACs) and adipose-derived stem cells (ASCs), which improved the maintenance of chondrogenic phenotype of ACs, and induced chondrogenesis of ASCs. Moreover, the functional microtissue aggregates of AC- or ASC-laden CEDPs induced equal levels of superior hyaline cartilage repair in a rabbit model. Therefore, our study demonstrated an alternative method for chondrocyte culture and stem cell differentiation, and a promising strategy for constructing tissue-engineered cartilage microtissues for in vivo articular cartilage repair and regeneration.
Collapse
Affiliation(s)
- Heyong Yin
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China; Department of Surgery, Ludwig-Maximilians-University (LMU), Nussbaumstr. 20, D-80336 Munich, Germany
| | - Yu Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China
| | - Xun Sun
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China; Department of Orthopaedics, Tianjin Hospital, No. 406 Jiefang Nan Road, Tianjin 300211, PR China
| | - Ganghua Cui
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China
| | - Zhen Sun
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China
| | - Peng Chen
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China
| | - Yichi Xu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China
| | - Xueling Yuan
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China
| | - Haoye Meng
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China
| | - Wenjing Xu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China
| | - Aiyuan Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China
| | - Shibi Lu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China
| | - Jiang Peng
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Beijing 100853, PR China.
| |
Collapse
|
29
|
Taraballi F, Sushnitha M, Tsao C, Bauza G, Liverani C, Shi A, Tasciotti E. Biomimetic Tissue Engineering: Tuning the Immune and Inflammatory Response to Implantable Biomaterials. Adv Healthc Mater 2018; 7:e1800490. [PMID: 29995315 DOI: 10.1002/adhm.201800490] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/31/2018] [Indexed: 12/31/2022]
Abstract
Regenerative medicine technologies rely heavily on the use of well-designed biomaterials for therapeutic applications. The success of implantable biomaterials hinges upon the ability of the chosen biomaterial to negotiate with the biological barriers in vivo. The most significant of these barriers is the immune system, which is composed of a highly coordinated organization of cells that induce an inflammatory response to the implanted biomaterial. Biomimetic platforms have emerged as novel strategies that aim to use the principle of biomimicry as a means of immunomodulation. This principle has manifested itself in the form of biomimetic scaffolds that imitate the composition and structure of biological cells and tissues. Recent work in this area has demonstrated the promising potential these technologies hold in overcoming the barrier of the immune system and, thereby, improve their overall therapeutic efficacy. In this review, a broad overview of the use of these strategies across several diseases and future avenues of research utilizing these platforms is provided.
Collapse
Affiliation(s)
- Francesca Taraballi
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Orthopedic & Sports Medicine The Houston Methodist Hospital Houston TX 77030 USA
| | - Manuela Sushnitha
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Bioengineering Rice University Houston TX 77005 USA
| | - Christopher Tsao
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
| | - Guillermo Bauza
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Center for NanoHealth Swansea University Medical School Swansea University Bay Singleton Park Wales Swansea SA2 8PP UK
| | - Chiara Liverani
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Biosciences Laboratory Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS Via Piero Maroncelli 40 47014 Meldola FC Italy
| | - Aaron Shi
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Wiess School of Natural Sciences Rice University Houston TX 77251‐1892 USA
| | - Ennio Tasciotti
- Center for Biomimetic Medicine Houston Methodist Research Institute Houston TX 77030 USA
- Department of Orthopedic & Sports Medicine The Houston Methodist Hospital Houston TX 77030 USA
| |
Collapse
|
30
|
Zhou K, Feng B, Wang W, Jiang Y, Zhang W, Zhou G, Jiang T, Cao Y, Liu W. Nanoscaled and microscaled parallel topography promotes tenogenic differentiation of ASC and neotendon formation in vitro. Int J Nanomedicine 2018; 13:3867-3881. [PMID: 30013341 PMCID: PMC6038871 DOI: 10.2147/ijn.s161423] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Topography at different scales plays an important role in directing mesenchymal stem cell differentiation including adipose-derived stem cells (ASCs) and the differential effect remains to be investigated. Purpose This study aimed to investigate the similarity and difference between micro- and nanoscaled aligned topography for inducing tenogenic differentiation of human ASCs (hASCs). Methods Parallel microgrooved PDMS membrane and a parallel aligned electrospun nanofibers of gelatin/poly-ε-caprolactone mixture were employed as the models for the study. Results Aligned topographies of both microscales and nanoscales could induce an elongated cell shape with parallel alignment, as supported by quantitative cell morphology analysis (cell area, cell body aspect, and cell body major axis angle). qPCR analysis also demonstrated that the aligned topography at both scales could induce the gene expressions of various tenogenic markers at the 7th day of in vitro culture including tenomodulin, collagen I and collagen VI, decorin, tenascin-C and biglycan, but with upregulated expression of scleraxis and tenascin-C only in microscaled topography. Additionally, tenogenic differentiation at the 3rd day was confirmed only at microscale. Furthermore, microscaled topography was confirmed for its tenogenic induction at tissue level as neotendon tissue was formed with the evidence of mature type I collagen fibers only in parallel aligned polyglycolic acid (PGA) microfibers after in vitro culture with mouse ASCs. Instead, only fat tissue was formed in random patterned PGA microfibers. Conclusion Both microscaled and nanoscaled aligned topographies could induce tenogenic differentiation of hASCs and micro-scaled topography seemed better able to induce elongated cell shape and stable tenogenic marker expression when compared to nanoscaled topography. The microscaled inductive effect was also confirmed at tissue level by neotendon formation in vitro.
Collapse
Affiliation(s)
- Kaili Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ;
| | - Bei Feng
- Shanghai Children's Medical Center, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China
| | - Wenbo Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ;
| | - Yongkang Jiang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ;
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ; .,National Tissue Engineering Center of China, Shanghai, People's Republic of China, ;
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ; .,National Tissue Engineering Center of China, Shanghai, People's Republic of China, ;
| | - Ting Jiang
- Department of Burn and Plastic Surgery, Nanchong Central Hospital, the Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan, People's Republic of China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ; .,National Tissue Engineering Center of China, Shanghai, People's Republic of China, ;
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University - School of Medicine, Shanghai, People's Republic of China, ; .,National Tissue Engineering Center of China, Shanghai, People's Republic of China, ;
| |
Collapse
|