1
|
Hong M, Guo J, Zhao Y, Song L, Zhao S, Wang R, Shi L, Zhang Z, Wu D, He Q, Chang C. Eltrombopag restores proliferative capacity and adipose-osteogenic balance of mesenchymal stromal cells in low-risk myelodysplastic syndromes. Eur J Pharmacol 2024; 985:177086. [PMID: 39481629 DOI: 10.1016/j.ejphar.2024.177086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/13/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
In low-risk myelodysplastic syndromes (MDS), the proinflammatory signaling is excessive, and the proliferation and differentiation potentials of mesenchymal stromal cells (MSCs) are strongly impaired. Eltrombopag (ELT) has been demonstrated recently effective and relatively safe in low-risk MDS with severe thrombocytopenia. However, its impact on the MDS-MSCs has not been investigated in any detail. Here, for the first time, we investigated the changes induced by ELT in MSCs' viability, proliferation, apoptosis, senescence, multilineage differentiation properties, and stem cell support capacity in low-risk MDS patients. We demonstrated that ELT may act on improving the impaired inflammatory profile and reactivating the downregulated canonical WNT signaling pathway in low-risk MDS, and also restoring the self-renewal capacity and the balance in adipose-osteogenic differentiation of MDS-MSCs.
Collapse
Affiliation(s)
- Minghua Hong
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Juan Guo
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Youshan Zhao
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Luxi Song
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Sida Zhao
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Roujia Wang
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lei Shi
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zheng Zhang
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Dong Wu
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Qi He
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chunkang Chang
- Department of Hematology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
2
|
de Souza IR, Suzukawa AA, da Silva Horinouchi CD, de Aguiar AM, Dallagiovanna B. Adipo-on-chip: a microphysiological system to culture human mesenchymal stem cells with improved adipogenic differentiation. IN VITRO MODELS 2024; 3:169-182. [PMID: 39877645 PMCID: PMC11756479 DOI: 10.1007/s44164-024-00076-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 01/31/2025]
Abstract
Obesity is associated with several comorbidities that cause high mortality rates worldwide. Thus, the study of adipose tissue (AT) has become a target of high interest because of its crucial contribution to many metabolic diseases and metabolizing potential. However, many AT-related physiological, pathophysiological, and toxicological mechanisms in humans are still poorly understood, mainly due to the use of non-human animal models. Organ-on-chip (OoC) platform is a promising alternative to animal models. However, the use of adipose-derived human mesenchymal stem cells (hASCs) in these models is still scarce, and more knowledge on the effects properties of culturing hASCs in OoC models is needed. Here, we present the development of an OoC using hASCs to assess adipogenic differentiation. The device capability to increase hASC differentiation levels was confirmed by Nile red staining to verify lipid droplets inside cells after 10 days of culture and fluid flow of 10 µL/h. The Adipo-on-a-chip system increases hASC proliferation and differentiation area compared with the standard culture method under static conditions (96-well plates) verified in hASCs from different donors by image analysis of cells stained with Nile red. The expression of the gene FABP4 is lower in the MPS, which calls attention to different homeostasis and control of lipids in cells in the MPS, compared with the plates. An increase of hASC proliferation in the MPS related to the 96-well plate was verified through protein Ki-67 expression. Cell and nuclei morphology (area, roundness, perimeter, width, length, width to length rate, symmetry, compactness, axial and radial properties to nuclei, and texture) and dominant direction of cells inside the MPS were evaluated to characterize hASCs in the present model. The presented microphysiological system (MPS) provides a promising tool for applications in mechanistic research aiming to investigate adipogenesis in AT and toxicological assessment based on the hASC differentiation potential.
Collapse
Affiliation(s)
- Isisdoris Rodrigues de Souza
- Laboratório de Biologia Básica de Células-Tronco, FIOCRUZ, Rua Professor Algacyr Munhoz Mader, 3775, Instituto Carlos Chagas, Curitiba, Paraná PR 81350-010 Brazil
| | - Andreia Akemi Suzukawa
- Laboratório de Biologia Básica de Células-Tronco, FIOCRUZ, Rua Professor Algacyr Munhoz Mader, 3775, Instituto Carlos Chagas, Curitiba, Paraná PR 81350-010 Brazil
| | - Cintia Delai da Silva Horinouchi
- Laboratório de Biologia Básica de Células-Tronco, FIOCRUZ, Rua Professor Algacyr Munhoz Mader, 3775, Instituto Carlos Chagas, Curitiba, Paraná PR 81350-010 Brazil
- Present Address: Laboratório Nacional de Biociências Do Centro Nacional de Pesquisa Em Energia e Materiais (LNBIO-CNPEM) - Grupo de Engenharia Tecidual, Rua Giuseppe Máximo Scolfaro, 10000 - Polo II de Alta Tecnologia, Campinas, SP 13083-970 Brazil
| | - Alessandra Melo de Aguiar
- Laboratório de Biologia Básica de Células-Tronco, FIOCRUZ, Rua Professor Algacyr Munhoz Mader, 3775, Instituto Carlos Chagas, Curitiba, Paraná PR 81350-010 Brazil
- Rede de Plataformas Tecnológicas FIOCRUZ - Bioensaios Com Métodos Alternativos Em Citotoxicidade, FIOCRUZ, Rua Professor Algacyr Munhoz Mader, 3775, Instituto Carlos Chagas, CuritibaParaná, PR 81350-010 Brazil
| | - Bruno Dallagiovanna
- Laboratório de Biologia Básica de Células-Tronco, FIOCRUZ, Rua Professor Algacyr Munhoz Mader, 3775, Instituto Carlos Chagas, Curitiba, Paraná PR 81350-010 Brazil
| |
Collapse
|
3
|
Campbell JM, Habibalahi A, Agha A, Handley S, Knab A, Xu X, Bhargava A, Lei Z, Mackevicius M, Tian Y, Mahbub SB, Anwer AG, Gronthos S, Paton S, Grey ST, Wu L, Gilchrist RB, Goldys EM. Single cell, Label free Characterisation of Human Mesenchymal Stromal cell Stemness and Future Growth Potential by Autofluorescence Multispectral Imaging. Stem Cell Rev Rep 2024; 20:2283-2292. [PMID: 39190057 PMCID: PMC11554749 DOI: 10.1007/s12015-024-10778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 08/28/2024]
Abstract
AIM To use autofluorescence multispectral imaging (AFMI) to develop a non-invasive assay for the in-depth characterisation of human bone marrow derived mesenchymal stromal cells (hBM-MSCs). METHODS hBM-MSCs were imaged by AFMI on gridded dishes, stained for endpoints of interest (STRO-1 positivity, alkaline phosphatase, beta galactosidase, DNA content) then relocated and results correlated. Intensity, texture and morphological features were used to characterise the colour distribution of regions of interest, and canonical discriminant analysis was used to separate groups. Additionally, hBM-MSC lines were cultured to arrest, with AFMI images taken after each passage to investigate whether an assay could be developed for growth potential. RESULTS STRO-1 positivity could be predicted with a receiver operator characteristic area under the curve (AUC) of 0.67. For spontaneous differentiation this was 0.66, for entry to the cell-cycle it was 0.77 and for senescence it was 0.77. Growth potential (population doublings remaining) was estimated with an RMSPE = 2.296. The Mean Absolute Error of the final prediction model indicated that growth potential could be predicted with an error of ± 1.86 doublings remaining. CONCLUSIONS This non-invasive methodology enabled the in-depth characterisation of hBM-MSCs from a single assay. This approach is advantageous for clinical applications as well as research and stands out for the characterisation of both present status as well as future behaviour. The use of data from five MSC lines with heterogenous AFMI profiles supports potential generalisability.
Collapse
Affiliation(s)
- Jared M Campbell
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Abbas Habibalahi
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Adnan Agha
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shannon Handley
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Aline Knab
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Xiaohu Xu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Akanksha Bhargava
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zhilin Lei
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Max Mackevicius
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yuan Tian
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Saabah B Mahbub
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ayad G Anwer
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Sharon Paton
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, 5000, Australia
- South Australian Health and Medical Research Institute, Adelaide, South Australia, 5000, Australia
| | - Shane T Grey
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Lindsay Wu
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, Australia
| | | | - Ewa M Goldys
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
4
|
Česnik AB, Švajger U. The issue of heterogeneity of MSC-based advanced therapy medicinal products-a review. Front Cell Dev Biol 2024; 12:1400347. [PMID: 39129786 PMCID: PMC11310176 DOI: 10.3389/fcell.2024.1400347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Mesenchymal stromal stem cells (MSCs) possess a remarkable potential for numerous clinical applications due to their unique properties including self-renewal, immunomodulation, paracrine actions and multilineage differentiation. However, the translation of MSC-based Advanced Therapy Medicinal Products (ATMPs) into the clinic has frequently met with inconsistent outcomes. One of the suspected reasons for this issue is the inherent and extensive variability that exists among such ATMPs, which makes the interpretation of their clinical efficacy difficult to assess, as well as to compare the results of various studies. This variability stems from numerous reasons including differences in tissue sources, donor attributes, variances in manufacturing protocols, as well as modes of administration. MSCs can be isolated from various tissues including bone marrow, umbilical cord, adipose tissue and others, each with its unique phenotypic and functional characteristics. While MSCs from different sources do share common features, they also exhibit distinct gene expression profiles and functional properites. Donor-specific factors such as age, sex, body mass index, and underlying health conditions can influence MSC phenotype, morphology, differentiation potential and function. Moreover, variations in preparation of MSC products introduces additional heterogeneity as a result of cell culture media composition, presence or absence of added growth factors, use of different serum supplements and culturing techniques. Once MSC products are formulated, storage protocols play a pivotal role in its efficacy. Factors that affect cell viability include cell concentration, delivery solution and importantly, post-thawing protocols where applicable. Ensuing, differences in administration protocols can critically affect the distribution and functionallity of administered cells. As MSC-based therapies continue to advance through numerous clinical trials, implication of strategies to reduce product heterogeneity is imperative. Central to addressing these challenges is the need for precise prediction of clinical responses, which require well-defined MSC populations and harmonized assessment of their specific functions. By addressing these issues by meaningful approaches, such as, e.g., MSC pooling, the field can overcome barriers to advance towards more consistent and effective MSC-based therapies.
Collapse
Affiliation(s)
- Ana Bajc Česnik
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Ljubljana, Slovenia
| | - Urban Švajger
- Slovenian Institute for Transfusion Medicine, Department for Therapeutic Services, Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
5
|
Larey AM, Spoerer TM, Daga KR, Morfin MG, Hynds HM, Carpenter J, Hines KM, Marklein RA. High throughput screening of mesenchymal stromal cell morphological response to inflammatory signals for bioreactor-based manufacturing of extracellular vesicles that modulate microglia. Bioact Mater 2024; 37:153-171. [PMID: 38549769 PMCID: PMC10972802 DOI: 10.1016/j.bioactmat.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024] Open
Abstract
Due to their immunomodulatory function, mesenchymal stromal cells (MSCs) are a promising therapeutic with the potential to treat neuroinflammation associated with neurodegenerative diseases. This function is mediated by secreted extracellular vesicles (MSC-EVs). Despite established safety, MSC clinical translation has been unsuccessful due to inconsistent clinical outcomes resulting from functional heterogeneity. Current approaches to mitigate functional heterogeneity include 'priming' MSCs with inflammatory signals to enhance function. However, comprehensive evaluation of priming and its effects on MSC-EV function has not been performed. Furthermore, clinical translation of MSC-EV therapies requires significant manufacturing scale-up, yet few studies have investigated the effects of priming in bioreactors. As MSC morphology has been shown to predict their immunomodulatory function, we screened MSC morphological response to an array of priming signals and evaluated MSC-EV identity and potency in response to priming in flasks and bioreactors. We identified unique priming conditions corresponding to distinct morphologies. These conditions demonstrated a range of MSC-EV preparation quality and lipidome, allowing us to discover a novel MSC-EV manufacturing condition, as well as gain insight into potential mechanisms of MSC-EV microglia modulation. Our novel screening approach and application of priming to MSC-EV bioreactor manufacturing informs refinement of larger-scale manufacturing and enhancement of MSC-EV function.
Collapse
Affiliation(s)
- Andrew M. Larey
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Thomas M. Spoerer
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Kanupriya R. Daga
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Maria G. Morfin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Hannah M. Hynds
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Jana Carpenter
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Kelly M. Hines
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Ross A. Marklein
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
6
|
Ali D, Okla M, Abuelreich S, Vishnubalaji R, Ditzel N, Hamam R, Kowal JM, Sayed A, Aldahmash A, Alajez NM, Kassem M. Apigenin and Rutaecarpine reduce the burden of cellular senescence in bone marrow stromal stem cells. Front Endocrinol (Lausanne) 2024; 15:1360054. [PMID: 38638133 PMCID: PMC11024792 DOI: 10.3389/fendo.2024.1360054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/15/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Osteoporosis is a systemic age-related disease characterized by reduced bone mass and microstructure deterioration, leading to increased risk of bone fragility fractures. Osteoporosis is a worldwide major health care problem and there is a need for preventive approaches. Methods and results Apigenin and Rutaecarpine are plant-derived antioxidants identified through functional screen of a natural product library (143 compounds) as enhancers of osteoblastic differentiation of human bone marrow stromal stem cells (hBMSCs). Global gene expression profiling and Western blot analysis revealed activation of several intra-cellular signaling pathways including focal adhesion kinase (FAK) and TGFβ. Pharmacological inhibition of FAK using PF-573228 (5 μM) and TGFβ using SB505124 (1μM), diminished Apigenin- and Rutaecarpine-induced osteoblast differentiation. In vitro treatment with Apigenin and Rutaecarpine, of primary hBMSCs obtained from elderly female patients enhanced osteoblast differentiation compared with primary hBMSCs obtained from young female donors. Ex-vivo treatment with Apigenin and Rutaecarpine of organotypic embryonic chick-femur culture significantly increased bone volume and cortical thickness compared to control as estimated by μCT-scanning. Discussion Our data revealed that Apigenin and Rutaecarpine enhance osteoblastic differentiation, bone formation, and reduce the age-related effects of hBMSCs. Therefore, Apigenin and Rutaecarpine cellular treatment represent a potential strategy for maintaining hBMSCs health during aging and osteoporosis.
Collapse
Affiliation(s)
- Dalia Ali
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB), Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Meshail Okla
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sarah Abuelreich
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Nicholas Ditzel
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB), Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Rimi Hamam
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Justyna M. Kowal
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB), Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Ahmed Sayed
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB), Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Abdullah Aldahmash
- Department of Medical Basic Sciences, College of Medicine, Vision College, Riyadh, Saudi Arabia
| | - Nehad M. Alajez
- Stem Cell Unit, Department of Anatomy, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Molecular Endocrinology & Stem Cell Research Unit (KMEB), Odense University Hospital, University of Southern Denmark, Odense, Denmark
- Institute for Cellular and Molecular Medicine (ICMM), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Makhija E, Zheng Y, Wang J, Leong HR, Othman RB, Ng EX, Lee EH, Kellogg LT, Lee YH, Yu H, Poon Z, Van Vliet KJ. Topological defects in self-assembled patterns of mesenchymal stromal cells in vitro are predictive attributes of condensation and chondrogenesis. PLoS One 2024; 19:e0297769. [PMID: 38547243 PMCID: PMC10977694 DOI: 10.1371/journal.pone.0297769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/11/2024] [Indexed: 04/02/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) are promising therapeutic agents for cartilage regeneration, including the potential of cells to promote chondrogenesis in vivo. However, process development and regulatory approval of MSCs as cell therapy products benefit from facile in vitro approaches that can predict potency for a given production run. Current standard in vitro approaches include a 21 day 3D differentiation assay followed by quantification of cartilage matrix proteins. We propose a novel biophysical marker that is cell population-based and can be measured from in vitro monolayer culture of MSCs. We hypothesized that the self-assembly pattern that emerges from collective-cell behavior would predict chondrogenesis motivated by our observation that certain features in this pattern, namely, topological defects, corresponded to mesenchymal condensations. Indeed, we observed a strong predictive correlation between the degree-of-order of the pattern at day 9 of the monolayer culture and chondrogenic potential later estimated from in vitro 3D chondrogenic differentiation at day 21. These findings provide the rationale and the proof-of-concept for using self-assembly patterns to monitor chondrogenic commitment of cell populations. Such correlations across multiple MSC donors and production batches suggest that self-assembly patterns can be used as a candidate biophysical attribute to predict quality and efficacy for MSCs employed therapeutically for cartilage regeneration.
Collapse
Affiliation(s)
- Ekta Makhija
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Yang Zheng
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- NUS Tissue Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore
| | - Jiahao Wang
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Han Ren Leong
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Engineering Science Programme, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Rashidah Binte Othman
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Ee Xien Ng
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Eng Hin Lee
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- NUS Tissue Engineering Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
- Department of Orthopaedic Surgery, National University of Singapore, Singapore, Singapore
| | - Lisa Tucker Kellogg
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Yie Hou Lee
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Obstetrics and Gynaecology Academic Clinical Programme, SingHealth Duke-NUS, Singapore, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, Singapore, Singapore
| | - Hanry Yu
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Institute of Bioengineering and Bioimaging, Agency for Science, Technology and Research, Singapore, Singapore
| | - Zhiyong Poon
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- SingHealth Duke-NUS Cell Therapy Centre, Singapore, Singapore
- Department of Haematology, Singapore General Hospital, Singapore, Singapore
| | - Krystyn J. Van Vliet
- Critical Analytics for Manufacturing Personalized-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART), Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Department of Materials Science and Engineering, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
8
|
Larey AM, Spoerer TM, Daga KR, Morfin MG, Hynds HM, Carpenter J, Hines KM, Marklein RA. High throughput screening of mesenchymal stromal cell morphological response to inflammatory signals for bioreactor-based manufacturing of extracellular vesicles that modulate microglia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567730. [PMID: 38014258 PMCID: PMC10680807 DOI: 10.1101/2023.11.19.567730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Due to their immunomodulatory function, mesenchymal stromal cells (MSCs) are a promising therapeutic with the potential to treat neuroinflammation associated with neurodegenerative diseases. This function can be mediated by secreted extracellular vesicles (MSC-EVs). Despite established safety, MSC clinical translation has been unsuccessful due to inconsistent clinical outcomes resulting from functional heterogeneity. Current approaches to mitigate functional heterogeneity include 'priming' MSCs with inflammatory signals to enhance function. However, comprehensive evaluation of priming and its effects on MSC-EV function has not been performed. Clinical translation of MSC-EV therapies requires significant manufacturing scale-up, yet few studies have investigated the effects of priming in bioreactors. As MSC morphology has been shown to predict their immunomodulatory function, we screened MSC morphological response to an array of priming signals and evaluated MSC-EV identity and potency in response to priming in flasks and bioreactors. We identified unique priming conditions corresponding to distinct morphologies. These conditions demonstrated a range of MSC-EV preparation quality and lipidome, allowing us to discover a novel MSC-EV manufacturing condition, as well as gain insight into potential mechanisms of MSC-EV microglia modulation. Our novel screening approach and application of priming to MSC-EV bioreactor manufacturing informs refinement of larger-scale manufacturing and enhancement of MSC-EV function.
Collapse
Affiliation(s)
- Andrew M. Larey
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Thomas M. Spoerer
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Kanupriya R. Daga
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Maria G. Morfin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Hannah M. Hynds
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Jana Carpenter
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Kelly M. Hines
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Ross A. Marklein
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
9
|
Chen L, Shi K, Ditzel N, Qiu W, Figeac F, Nielsen LHD, Tencerova M, Kowal JM, Ding M, Andreasen CM, Andersen TL, Kassem M. KIAA1199 deficiency enhances skeletal stem cell differentiation to osteoblasts and promotes bone regeneration. Nat Commun 2023; 14:2016. [PMID: 37037828 PMCID: PMC10086002 DOI: 10.1038/s41467-023-37651-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 03/14/2023] [Indexed: 04/12/2023] Open
Abstract
Upon transplantation, skeletal stem cells (also known as bone marrow stromal or mesenchymal stem cells) can regulate bone regeneration by producing secreted factors. Here, we identify KIAA1199 as a bone marrow stromal cell-secreted factor in vitro and in vivo. KIAA1199 plasma levels of patients positively correlate with osteoporotic fracture risk and expression levels of KIAA1199 in patient bone marrow stromal cells negatively correlates with their osteogenic differentiation potential. KIAA1199-deficient bone marrow stromal cells exhibit enhanced osteoblast differentiation in vitro and ectopic bone formation in vivo. Consistently, KIAA1199 knockout mice display increased bone mass and biomechanical strength, as well as an increased bone formation rate. They also exhibit accelerated healing of surgically generated bone defects and are protected from ovariectomy-induced bone loss. Mechanistically, KIAA1199 regulates osteogenesis by inhibiting the production of osteopontin by osteoblasts, via integrin-mediated AKT and ERK-MAPK intracellular signaling. Thus, KIAA1199 is a regulator of osteoblast differentiation and bone regeneration and could be targeted for the treatment or management of low bone mass conditions.
Collapse
Affiliation(s)
- Li Chen
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark.
- Dept. of Pathology and Physiopathology, Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, China.
| | - Kaikai Shi
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Nicholas Ditzel
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Weimin Qiu
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Florence Figeac
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Louise Himmelstrup Dreyer Nielsen
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Michaela Tencerova
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Justyna Magdalena Kowal
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Ming Ding
- Department of Orthopaedic Surgery and Traumatology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | | | | | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Endocrine Research Laboratory (KMEB), Odense University Hospital & University of Southern Denmark, Odense, Denmark.
- Department of Cellular and Molecular Medicine (ICMM), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Fonseca LN, Bolívar-Moná S, Agudelo T, Beltrán LD, Camargo D, Correa N, Del Castillo MA, Fernández de Castro S, Fula V, García G, Guarnizo N, Lugo V, Martínez LM, Melgar V, Peña MC, Pérez WA, Rodríguez N, Pinzón A, Albarracín SL, Olaya M, Gutiérrez-Gómez ML. Cell surface markers for mesenchymal stem cells related to the skeletal system: A scoping review. Heliyon 2023; 9:e13464. [PMID: 36865479 PMCID: PMC9970931 DOI: 10.1016/j.heliyon.2023.e13464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) have been described as bone marrow stromal cells, which can form cartilage, bone or hematopoietic supportive stroma. In 2006, the International Society for Cell Therapy (ISCT) established a set of minimal characteristics to define MSCs. According to their criteria, these cells must express CD73, CD90 and CD105 surface markers; however, it is now known they do not represent true stemness epitopes. The objective of the present work was to determine the surface markers for human MSCs associated with skeletal tissue reported in the literature (1994-2021). To this end, we performed a scoping review for hMSCs in axial and appendicular skeleton. Our findings determined the most widely used markers were CD105 (82.9%), CD90 (75.0%) and CD73 (52.0%) for studies performed in vitro as proposed by the ISCT, followed by CD44 (42.1%), CD166 (30.9%), CD29 (27.6%), STRO-1 (17.7%), CD146 (15.1%) and CD271 (7.9%) in bone marrow and cartilage. On the other hand, only 4% of the articles evaluated in situ cell surface markers. Even though most studies use the ISCT criteria, most publications in adult tissues don't evaluate the characteristics that establish a stem cell (self-renewal and differentiation), which will be necessary to distinguish between a stem cell and progenitor populations. Collectively, MSCs require further understanding of their characteristics if they are intended for clinical use.
Collapse
Affiliation(s)
- Luisa Nathalia Fonseca
- Master Student in Biological Sciences - School of Science, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Santiago Bolívar-Moná
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Tatiana Agudelo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Liz Daniela Beltrán
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Daniel Camargo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Nestor Correa
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - María Alexandra Del Castillo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | | | - Valeria Fula
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Gabriela García
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Natalia Guarnizo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Valentina Lugo
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Liz Mariana Martínez
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Verónica Melgar
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - María Clara Peña
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Wilfran Arbey Pérez
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Nicolás Rodríguez
- Medical Student - Stem Cell Research Group – School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Andrés Pinzón
- Department of Orthopedics and Traumatology - School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Sonia Luz Albarracín
- Department of Nutrition and Biochemistry -School of Science, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - Mercedes Olaya
- Department of Pathology - School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| | - María Lucía Gutiérrez-Gómez
- Department of Morphology - School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
- Institute of Human Genetics - School of Medicine, Pontificia Universidad Javeriana. Bogotá, Colombia
| |
Collapse
|
11
|
Selig M, Azizi S, Walz K, Lauer JC, Rolauffs B, Hart ML. Cell morphology as a biological fingerprint of chondrocyte phenotype in control and inflammatory conditions. Front Immunol 2023; 14:1102912. [PMID: 36860844 PMCID: PMC9968733 DOI: 10.3389/fimmu.2023.1102912] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction Little is known how inflammatory processes quantitatively affect chondrocyte morphology and how single cell morphometric data could be used as a biological fingerprint of phenotype. Methods We investigated whether trainable high-throughput quantitative single cell morphology profiling combined with population-based gene expression analysis can be used to identify biological fingerprints that are discriminatory of control vs. inflammatory phenotypes. The shape of a large number of chondrocytes isolated from bovine healthy and human osteoarthritic (OA) cartilages was quantified under control and inflammatory (IL-1β) conditions using a trainable image analysis technique measuring a panel of cell shape descriptors (area, length, width, circularity, aspect ratio, roundness, solidity). The expression profiles of phenotypically relevant markers were quantified by ddPCR. Statistical analysis, multivariate data exploration, and projection-based modelling were used for identifying specific morphological fingerprints indicative of phenotype. Results Cell morphology was sensitive to both cell density and IL-1β. In both cell types, all shape descriptors correlated with expression of extracellular matrix (ECM)- and inflammatory-regulating genes. A hierarchical clustered image map revealed that individual samples sometimes responded differently in control or IL-1β conditions than the overall population. Despite these variances, discriminative projection-based modeling revealed distinct morphological fingerprints that discriminated between control and inflammatory chondrocyte phenotypes: the most essential morphological characteristics attributable to non-treated control cells was a higher cell aspect ratio in healthy bovine chondrocytes and roundness in OA human chondrocytes. In contrast, a higher circularity and width in healthy bovine chondrocytes and length and area in OA human chondrocytes indicated an inflammatory (IL-1β) phenotype. When comparing the two species/health conditions, bovine healthy and human OA chondrocytes exhibited comparable IL-1β-induced morphologies in roundness, a widely recognized marker of chondrocyte phenotype, and aspect ratio. Discussion Overall, cell morphology can be used as a biological fingerprint for describing chondrocyte phenotype. Quantitative single cell morphometry in conjunction with advanced methods for multivariate data analysis allows identifying morphological fingerprints that can discriminate between control and inflammatory chondrocyte phenotypes. This approach could be used to assess how culture conditions, inflammatory mediators, and therapeutic modulators regulate cell phenotype and function.
Collapse
Affiliation(s)
- Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Saman Azizi
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Kathrin Walz
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Jasmin C Lauer
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Melanie L Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center-Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
12
|
Burns JS, Kassem M. Identifying Biomarkers for Osteogenic Potency Assay Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:39-58. [PMID: 37258783 DOI: 10.1007/978-3-031-30040-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
There has been extensive exploration of how cells may serve as advanced therapy medicinal products to treat skeletal pathologies. Osteoblast progenitors responsible for production of extracellular matrix that is subsequently mineralized during bone formation have been characterised as a rare bone marrow subpopulation of cell culture plastic adherent cells. Conveniently, they proliferate to form single-cell derived colonies of fibroblastoid cells, termed colony forming unit fibroblasts that can subsequently differentiate to aggregates resembling small areas of cartilage or bone. However, donor heterogeneity and loss of osteogenic differentiation capacity during extended cell culture have made the discovery of reliable potency assay biomarkers difficult. Nonetheless, functional osteoblast models derived from telomerised human bone marrow stromal cells have allowed extensive comparative analysis of gene expression, microRNA, morphological phenotypes and secreted proteins. This chapter highlights numerous insights into the molecular mechanisms underpinning osteogenic differentiation of multipotent stromal cells and bone formation, discussing aspects involved in the choice of useful biomarkers for functional attributes that can be quantitively measured in osteogenic potency assays.
Collapse
Affiliation(s)
- Jorge S Burns
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy.
| | - Moustapha Kassem
- University Hospital of Odense, University of Southern Denmark, Odense, Denmark
- Danish Stem Cell Center, University of Copenhagen, Copenhagen, Denmark
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Chinnadurai R. Advanced Technologies for Potency Assay Measurement. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1420:81-95. [PMID: 37258785 DOI: 10.1007/978-3-031-30040-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Crucial for their application, cell products need to be well-characterized in the cell manufacturing facilities and conform to regulatory approval criteria before infusion into the patients. Mesenchymal Stromal Cells (MSCs) are the leading cell therapy candidate in clinical trials worldwide. Early phase clinical trials have demonstrated that MSCs display an excellent safety profile and are well tolerated. However, MSCs have also exhibited contradictory efficacy in later-phase clinical trials with reasons for this discrepancy including poorly understood mechanism of MSC therapeutic action. With likelihood that a number of attributes are involved in MSC derived clinical benefit, an assay that measures a single quality of may not adequately reflect potency, thus a combination of bioassays and analytical methods, collectively called "assay matrix" are favoured for defining the potency of MSC more adequately. This chapter highlights advanced technologies and targets that can achieve quantitative measurement for a range of MSC attributes, including immunological, genomic, secretome, phosphorylation, morphological, biomaterial, angiogenic and metabolic assays.
Collapse
Affiliation(s)
- Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA.
| |
Collapse
|
14
|
Bispo DSC, Jesus CSH, Romek K, Marques IMC, Oliveira MB, Mano JF, Gil AM. An Intracellular Metabolic Signature as a Potential Donor-Independent Marker of the Osteogenic Differentiation of Adipose Tissue Mesenchymal Stem Cells. Cells 2022; 11:cells11233745. [PMID: 36497004 PMCID: PMC9739047 DOI: 10.3390/cells11233745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
This paper describes an untargeted NMR metabolomics study to identify potential intracellular donor-dependent and donor-independent metabolic markers of proliferation and osteogenic differentiation of human adipose mesenchymal stem cells (hAMSCs). The hAMSCs of two donors with distinct proliferating/osteogenic characteristics were fully characterized regarding their polar endometabolome during proliferation and osteogenesis. An 18-metabolites signature (including changes in alanine, aspartate, proline, tyrosine, ATP, and ADP, among others) was suggested to be potentially descriptive of cell proliferation, independently of the donor. In addition, a set of 11 metabolites was proposed to compose a possible donor-independent signature of osteogenesis, mostly involving changes in taurine, glutathione, methylguanidine, adenosine, inosine, uridine, and creatine/phosphocreatine, choline/phosphocholine and ethanolamine/phosphocholine ratios. The proposed signatures were validated for a third donor, although they require further validation in a larger donor cohort. We believe that this proof of concept paves the way to exploit metabolic markers to monitor (and potentially predict) cell proliferation and the osteogenic ability of different donors.
Collapse
|
15
|
Wu D, Zhao L, Sui B, Tan L, Lu L, Mao X, Liao G, Shi S, Cao Y, Yang X, Kou X. An Appearance Data-Driven Model Visualizes Cell State and Predicts Mesenchymal Stem Cell Regenerative Capacity. SMALL METHODS 2022; 6:e2200087. [PMID: 35674483 DOI: 10.1002/smtd.202200087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Mesenchymal stem cells (MSCs) are widely used in treating various diseases. However, lack of a reliable evaluation approach to characterize the potency of MSCs has dampened their clinical applications. Here, a function-oriented mathematical model is established to evaluate and predict the regenerative capacity (RC) of MSCs. Processed by exhaustive testing, the model excavates four optimal fitted indices, including nucleus roundness, nucleus/cytoplasm ratio, side-scatter height, and ERK1/2 from the given index combinations. Notably, three of them except ERK1/2 are cell appearance-associated features. The predictive power of the model is validated via screening experiments of these indices by predicting the RC of newly enrolled and chemical inhibitor-treated MSCs. Further RNA-sequencing analysis reveals that cell appearance-based indices may serve as major indicators to visualize the results of integration-weighted signals in and out of cells and reflect MSC stemness. In general, this study proposes an appearance data-driven predictive model for the RC and stemness of MSCs.
Collapse
Affiliation(s)
- Di Wu
- Hospital of Stomatology, Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Hospital of Stomatology, Guanghua School of Stomatology, Department of Oral and Maxillofacial Surgery, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Hospital of Stomatology, Guanghua School of Stomatology, Department of Orthodontics, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Lu Zhao
- Hospital of Stomatology, Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Bingdong Sui
- Hospital of Stomatology, Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Lingping Tan
- Hospital of Stomatology, Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Lu Lu
- Hospital of Stomatology, Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Xueli Mao
- Hospital of Stomatology, Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Guiqing Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Department of Oral and Maxillofacial Surgery, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Songtao Shi
- Hospital of Stomatology, Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Key Laboratory of Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yang Cao
- Hospital of Stomatology, Guanghua School of Stomatology, Department of Orthodontics, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Xiaobao Yang
- School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510640, China
| | - Xiaoxing Kou
- Hospital of Stomatology, Guanghua School of Stomatology, South China Center of Craniofacial Stem Cell Research, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
- Key Laboratory of Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
16
|
Li L, Liu Y, Liu X, Zheng N, Gu Y, Song Y, Wang X. Regulatory roles of external cholesterol in human airway epithelial mitochondrial function through STARD3 signalling. Clin Transl Med 2022; 12:e902. [PMID: 35678098 PMCID: PMC9178408 DOI: 10.1002/ctm2.902] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hypercholesterolemia is found in patients with chronic lung inflammation, during which airway epithelial cells play important roles in maintenance of inflammatory responses to pathogens. The present study aims at molecular mechanisms by which cholesterol changes airway epithelial sensitivity in response to smoking. METHODS Human bronchial epithelial cells (HBEs) were stimulated with cigarette smoke extract (CSE) and mice were exposed to CS/lipopolysaccharide (LPS) as models in vitro and in vivo. Severe COPD patients and healthy volunteers were also enrolled and the level of cholesterol in plasma was detected by metabolomics. Filipin III and elisa kits were used to stain free cholesterol. Mitochondrial function was detected by mitotracker green, mitotracker green, and Seahorse. Mitochondrial morphology was detected by high content screening and electron microscopy. The mRNA and protein levels of mitochondrial dynamics-related proteins were detected by RT-qPCR and Western blot,respectively. BODIPY 493/503 was used to stain lipid droplets. Lipidomics was used to detect intracellular lipid components. The mRNA level of interleukin (IL)-6 and IL-8 were detected by RT-qPCR. RESULTS We found that the cholesterol overload was associated with chronic obstructive pulmonary disease (COPD) and airway epithelia-driven inflammation, evidenced by hypercholesterolemia in patients with COPD and preclinical models, alteration of lipid metabolism-associated genes in CSE-induced airway epithelia and production of ILs. External cholesterol altered airway epithelial sensitivity of inflammation in response to CSE, through the regulation of STARD3-MFN2 pathway, cholesterol re-distribution, altered transport and accumulation of cholesterol, activities of lipid transport regulators and disorder of mitochondrial function and dynamics. MFN2 down-regulation increased airway epithelial sensitivity and production of ILs after smoking, at least partially by injuring fatty acid oxidation and activating mTOR phosphorylation. CONCLUSIONS Our data provide new insights for understanding molecular mechanisms of cholesterol-altered airway epithelial inflammation and for developing diagnostic biomarkers and therapeutic targets to improve patient outcomes.
Collapse
Affiliation(s)
- Liyang Li
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Yifei Liu
- Center of Molecular Diagnosis and TherapyThe Second Hospital of Fujian Medical UniversityQuanzhouFujianChina
| | - Xuanqi Liu
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
| | - Nannan Zheng
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Yutong Gu
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
| | - Xiangdong Wang
- Department of Pulmonary and Critical Care Medicine, Zhongshan HospitalFudan University Shanghai Medical CollegeShanghaiChina
- Shanghai Institute of Clinical BioinformaticsShanghaiChina
- Shanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| |
Collapse
|
17
|
Protein Expression of AEBP1, MCM4, and FABP4 Differentiate Osteogenic, Adipogenic, and Mesenchymal Stromal Stem Cells. Int J Mol Sci 2022; 23:ijms23052568. [PMID: 35269711 PMCID: PMC8910760 DOI: 10.3390/ijms23052568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem cells (MSCs) gain an increasing focus in the field of regenerative medicine due to their differentiation abilities into chondrocytes, adipocytes, and osteoblastic cells. However, it is apparent that the transformation processes are extremely complex and cause cellular heterogeneity. The study aimed to characterize differences between MSCs and cells after adipogenic (AD) or osteoblastic (OB) differentiation at the proteome level. Comparative proteomic profiling was performed using tandem mass spectrometry in data-independent acquisition mode. Proteins were quantified by deep neural networks in library-free mode and correlated to the Molecular Signature Database (MSigDB) hallmark gene set collections for functional annotation. We analyzed 4108 proteins across all samples, which revealed a distinct clustering between MSCs and cell differentiation states. Protein expression profiling identified activation of the Peroxisome proliferator-activated receptors (PPARs) signaling pathway after AD. In addition, two distinct protein marker panels could be defined for osteoblastic and adipocytic cell lineages. Hereby, overexpression of AEBP1 and MCM4 for OB as well as of FABP4 for AD was detected as the most promising molecular markers. Combination of deep neural network and machine-learning algorithms with data-independent mass spectrometry distinguish MSCs and cell lineages after adipogenic or osteoblastic differentiation. We identified specific proteins as the molecular basis for bone formation, which could be used for regenerative medicine in the future.
Collapse
|
18
|
Figeac F, Tencerova M, Ali D, Andersen TL, Appadoo DRC, Kerckhofs G, Ditzel N, Kowal JM, Rauch A, Kassem M. Impaired bone fracture healing in type 2 diabetes is caused by defective functions of skeletal progenitor cells. Stem Cells 2022; 40:149-164. [DOI: 10.1093/stmcls/sxab011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/17/2021] [Indexed: 11/12/2022]
Abstract
Abstract
The mechanisms of obesity and type 2 diabetes (T2D)-associated impaired fracture healing are poorly studied. In a murine model of T2D reflecting both hyperinsulinemia induced by high fat diet (HFD) and insulinopenia induced by treatment with streptozotocin (STZ), we examined bone healing in a tibia cortical bone defect. A delayed bone healing was observed during hyperinsulinemia as newly formed bone was reduced by – 28.4±7.7% and was associated with accumulation of marrow adipocytes at the defect site +124.06±38.71%, and increased density of SCA1+ (+74.99± 29.19%) but not Runx2 +osteoprogenitor cells. We also observed increased in reactive oxygen species production (+101.82± 33.05%), senescence gene signature (≈106.66± 34.03%) and LAMIN B1 - senescent cell density (+225.18± 43.15%), suggesting accelerated senescence phenotype. During insulinopenia, a more pronounced delayed bone healing was observed with decreased newly formed bone to -34.9± 6.2% which was inversely correlated with glucose levels (R 2=0.48, p<0.004) and callus adipose tissue area (R 2=0.3711, p<0.01). Finally, to investigate the relevance to human physiology, we observed that sera from obese and T2D subjects had disease state-specific inhibitory effects on osteoblast related gene signatures in human bone marrow stromal cells which resulted in inhibition of osteoblast and enhanced adipocyte differentiation. Our data demonstrate that T2D exerts negative effects on bone healing through inhibition of osteoblast differentiation of skeletal stem cells and induction of accelerated bone senescence and that the hyperglycaemia per se and not just insulin levels is detrimental for bone healing.
Collapse
Affiliation(s)
- Florence Figeac
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
| | - Michaela Tencerova
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
- Current Molecular Physiology of Bone, Institute of Physiology, the Czech Academy of Sciences, Prague, Czech Republic
| | - Dalia Ali
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
| | - Thomas L Andersen
- Department of Pathology, Odense University Hospital, Odense
- Clinical Cell Biology, Research Unit of Pathology, Department of Clinical Research, University of Southern Denmark, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Denmark
| | | | - Greet Kerckhofs
- Biomechanics lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Institute for Experimental and Clinical Research, UCLouvain, Woluwe, Belgium
- Department of Material Science and Engineering, KU Leuven, Leuven, Belgium
| | - Nicholas Ditzel
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
| | - Justyna M Kowal
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
| | - Alexander Rauch
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Moustapha Kassem
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
- Department of Cellular and Molecular Medicine, Danish Stem Cell Center (DanStem), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Mosquera MJ, Kim S, Bareja R, Fang Z, Cai S, Pan H, Asad M, Martin ML, Sigouros M, Rowdo FM, Ackermann S, Capuano J, Bernheim J, Cheung C, Doane A, Brady N, Singh R, Rickman DS, Prabhu V, Allen JE, Puca L, Coskun AF, Rubin MA, Beltran H, Mosquera JM, Elemento O, Singh A. Extracellular Matrix in Synthetic Hydrogel-Based Prostate Cancer Organoids Regulate Therapeutic Response to EZH2 and DRD2 Inhibitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2100096. [PMID: 34676924 PMCID: PMC8820841 DOI: 10.1002/adma.202100096] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/09/2021] [Indexed: 05/30/2023]
Abstract
Following treatment with androgen receptor (AR) pathway inhibitors, ≈20% of prostate cancer patients progress by shedding their AR-dependence. These tumors undergo epigenetic reprogramming turning castration-resistant prostate cancer adenocarcinoma (CRPC-Adeno) into neuroendocrine prostate cancer (CRPC-NEPC). No targeted therapies are available for CRPC-NEPCs, and there are minimal organoid models to discover new therapeutic targets against these aggressive tumors. Here, using a combination of patient tumor proteomics, RNA sequencing, spatial-omics, and a synthetic hydrogel-based organoid, putative extracellular matrix (ECM) cues that regulate the phenotypic, transcriptomic, and epigenetic underpinnings of CRPC-NEPCs are defined. Short-term culture in tumor-expressed ECM differentially regulated DNA methylation and mobilized genes in CRPC-NEPCs. The ECM type distinctly regulates the response to small-molecule inhibitors of epigenetic targets and Dopamine Receptor D2 (DRD2), the latter being an understudied target in neuroendocrine tumors. In vivo patient-derived xenograft in immunocompromised mice showed strong anti-tumor response when treated with a DRD2 inhibitor. Finally, we demonstrate that therapeutic response in CRPC-NEPCs under drug-resistant ECM conditions can be overcome by first cellular reprogramming with epigenetic inhibitors, followed by DRD2 treatment. The synthetic organoids suggest the regulatory role of ECM in therapeutic response to targeted therapies in CRPC-NEPCs and enable the discovery of therapies to overcome resistance.
Collapse
Affiliation(s)
- Matthew J Mosquera
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Sungwoong Kim
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Rohan Bareja
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Zhou Fang
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Shuangyi Cai
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Heng Pan
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Muhammad Asad
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Maria Laura Martin
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Michael Sigouros
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Florencia M Rowdo
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Sarah Ackermann
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Jared Capuano
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Jacob Bernheim
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Cynthia Cheung
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Ashley Doane
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Nicholas Brady
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Richa Singh
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - David S Rickman
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | | | | | - Loredana Puca
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
| | - Ahmet F Coskun
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, Bern, 3012, Switzerland
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Juan Miguel Mosquera
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Olivier Elemento
- Englander Institute for Precision Medicine, Weill Cornell Medicine-New York-Presbyterian Hospital, New York, NY, 10021, USA
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Ankur Singh
- Sibley School of Mechanical Engineering, Cornell University, Ithaca, NY, 14850, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA, 30332, USA
| |
Collapse
|
20
|
From imaging a single cell to implementing precision medicine: an exciting new era. Emerg Top Life Sci 2021; 5:837-847. [PMID: 34889448 PMCID: PMC8786301 DOI: 10.1042/etls20210219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 11/17/2022]
Abstract
In the age of high-throughput, single-cell biology, single-cell imaging has evolved not only in terms of technological advancements but also in its translational applications. The synchronous advancements of imaging and computational biology have produced opportunities of merging the two, providing the scientific community with tools towards observing, understanding, and predicting cellular and tissue phenotypes and behaviors. Furthermore, multiplexed single-cell imaging and machine learning algorithms now enable patient stratification and predictive diagnostics of clinical specimens. Here, we provide an overall summary of the advances in single-cell imaging, with a focus on high-throughput microscopy phenomics and multiplexed proteomic spatial imaging platforms. We also review various computational tools that have been developed in recent years for image processing and downstream applications used in biomedical sciences. Finally, we discuss how harnessing systems biology approaches and data integration across disciplines can further strengthen the exciting applications and future implementation of single-cell imaging on precision medicine.
Collapse
|
21
|
Kowal JM, Möller S, Ali D, Figeac F, Barington T, Schmal H, Kassem M. Identification of a clinical signature predictive of differentiation fate of human bone marrow stromal cells. Stem Cell Res Ther 2021; 12:265. [PMID: 33941262 PMCID: PMC8091554 DOI: 10.1186/s13287-021-02338-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 04/19/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Transplantation of human bone marrow stromal cells (hBMSCs) is a promising therapy for bone regeneration due to their ability to differentiate into bone forming osteoblastic cells. However, transplanted hBMSCs exhibit variable capacity for bone formation resulting in inconsistent clinical outcome. The aim of the study was to identify a set of donor- and cell-related characteristics that detect hBMSCs with optimal osteoblastic differentiation capacity. METHODS We collected hBMSCs from 58 patients undergoing surgery for bone fracture. Clinical profile of the donors and in vitro characteristics of cultured hBMSCs were included in uni- and multivariable analysis to determine their predictive value for osteoblastic versus adipocytic differentiation capacity assessed by quantification of mineralized matrix and mature adipocyte formation, respectively. RESULTS We identified a signature that explained > 50% of variation in osteoblastic differentiation outcome which included the following positive predictors: donor sex (male), absence of osteoporosis diagnosis, intake of vitamin D supplements, higher fraction of CD146+, and alkaline phosphate (ALP+) cells. With the exception of vitamin D and ALP+ cells, these variables were also negative predictors of adipocytic differentiation. CONCLUSIONS Using a combination of clinical and cellular criteria, it is possible to predict differentiation outcome of hBMSCs. This signature may be helpful in selecting donor cells in clinical trials of bone regeneration.
Collapse
Affiliation(s)
- Justyna Magdalena Kowal
- Department of Endocrinology, Odense University Hospital, Odense, Denmark. .,Molecular Endocrinology Unit (KMEB), Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Sören Möller
- OPEN - Open Patient data Explorative Network, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Dalia Ali
- Department of Endocrinology, Odense University Hospital, Odense, Denmark.,Molecular Endocrinology Unit (KMEB), Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Florence Figeac
- Department of Endocrinology, Odense University Hospital, Odense, Denmark.,Molecular Endocrinology Unit (KMEB), Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Torben Barington
- Department of Clinical Immunology, Odense University Hospital, Odense, Denmark.,Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Hagen Schmal
- Department of Orthopedics and Traumatology, Odense University Hospital, Odense, Denmark.,Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106, Freiburg, Germany
| | - Moustapha Kassem
- Department of Endocrinology, Odense University Hospital, Odense, Denmark.,Molecular Endocrinology Unit (KMEB), Institute of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Cellular and Molecular Medicine, Danish Stem Cell Center (DanStem), University of Copenhagen, 2200, Copenhagen, Denmark
| |
Collapse
|
22
|
Lnc GNG12-AS1 knockdown suppresses glioma progression through the AKT/GSK-3β/β-catenin pathway. Biosci Rep 2021; 40:225952. [PMID: 32735016 PMCID: PMC7435023 DOI: 10.1042/bsr20201578] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/08/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) are increasingly being regarded as regulators of glioma development. Notably, some studies report that GNG12-AS1 plays important functions and molecular mechanism in breast cancer, but there are no existing studies in glioma. OBJECTIVE To analyze the biological functions and potential mechanisms of GNG12-AS1 in glioma. METHODS We detected the expression of GNG12-AS1 in glioma tissues through analyzing TCGA data as well as our clinical samples. We then evaluated cell proliferation through MTT assay and colony formation and cell migration by transwell assay, wound healing assay and single cell tracking assay. After, we analyzed the effects of the AKT/GSK-3β/β-catenin through Western blotting and utilized the β-catenin agonist SKL2001 for the rescue experiment. RESULTS GNG12-AS1 was highly expressed in glioma tissues. The silence of GNG12-AS1 inhibited the proliferation, migration and epithelial-mesenchymal transition of glioma cells, and reduced the activity of the AKT/GSK-3β/β-catenin pathway. Notably, SKL2001 could reverse cell migration as well as β-catenin expression in glioma cells with lower GNG12-AS1 expression. CONCLUSIONS GNG12-AS1 regulates proliferation and migration of glioma cells through the AKT/GSK-3β/β-catenin signaling and can perhaps be a new target for the treatment of glioma.
Collapse
|
23
|
Imboden S, Liu X, Lee BS, Payne MC, Hsieh CJ, Lin NYC. Investigating heterogeneities of live mesenchymal stromal cells using AI-based label-free imaging. Sci Rep 2021; 11:6728. [PMID: 33762607 PMCID: PMC7991643 DOI: 10.1038/s41598-021-85905-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/08/2021] [Indexed: 12/27/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are multipotent cells that have great potential for regenerative medicine, tissue repair, and immunotherapy. Unfortunately, the outcomes of MSC-based research and therapies can be highly inconsistent and difficult to reproduce, largely due to the inherently significant heterogeneity in MSCs, which has not been well investigated. To quantify cell heterogeneity, a standard approach is to measure marker expression on the protein level via immunochemistry assays. Performing such measurements non-invasively and at scale has remained challenging as conventional methods such as flow cytometry and immunofluorescence microscopy typically require cell fixation and laborious sample preparation. Here, we developed an artificial intelligence (AI)-based method that converts transmitted light microscopy images of MSCs into quantitative measurements of protein expression levels. By training a U-Net+ conditional generative adversarial network (cGAN) model that accurately (mean [Formula: see text] = 0.77) predicts expression of 8 MSC-specific markers, we showed that expression of surface markers provides a heterogeneity characterization that is complementary to conventional cell-level morphological analyses. Using this label-free imaging method, we also observed a multi-marker temporal-spatial fluctuation of protein distributions in live MSCs. These demonstrations suggest that our AI-based microscopy can be utilized to perform quantitative, non-invasive, single-cell, and multi-marker characterizations of heterogeneous live MSC culture. Our method provides a foundational step toward the instant integrative assessment of MSC properties, which is critical for high-throughput screening and quality control in cellular therapies.
Collapse
Affiliation(s)
- Sara Imboden
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 90095, USA.
| | - Xuanqing Liu
- Department of Computer Science, University of California, Los Angeles, 90095, USA
| | - Brandon S Lee
- Department of Bioengineering, University of California, Los Angeles, 90095, USA
| | - Marie C Payne
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 90095, USA
| | - Cho-Jui Hsieh
- Department of Computer Science, University of California, Los Angeles, 90095, USA
| | - Neil Y C Lin
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, 90095, USA.,Department of Bioengineering, University of California, Los Angeles, 90095, USA.,Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, 90095, USA
| |
Collapse
|
24
|
Ofiteru AM, Becheru DF, Gharbia S, Balta C, Herman H, Mladin B, Ionita M, Hermenean A, Burns JS. Qualifying Osteogenic Potency Assay Metrics for Human Multipotent Stromal Cells: TGF-β2 a Telling Eligible Biomarker. Cells 2020; 9:E2559. [PMID: 33260388 PMCID: PMC7760953 DOI: 10.3390/cells9122559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023] Open
Abstract
Potency assays are critical for regenerative medicine, addressing the known challenge of functional heterogeneity among human multipotent stromal cells (hMSC). Necessary laboratory cell expansion allows analysis before implantation in the patient. Levels of induction of five signature gene biomarkers, ALPL, COL1A2, DCN, ELN and RUNX2, constituted a previously reported proof-of-principle osteogenic potency assay. We tested assay modification to enhance reproducibility using six consistent bone marrow derived hBM-MSC and explored applicability to three adipose tissue derived hAT-MSC. Using a potent proprietary osteogenic induction factor, the GUSB/YWAHZ reference gene pair provided real time PCR consistency. The novel assay conditions supported the concept that genes encoding extracellular matrix proteins one week after osteogenic induction were informative. Nonetheless, relatively low induction of COL1A2 and ELN encouraged search for additional biomarkers. TGFB2 mRNA induction, important for osteogenic commitment, was readily quantifiable in both hBM-MSC and hAT-MSC. Combined with DCN, TGFB2 mRNA induction data provided discriminatory power for resolving donor-specific heterogeneity. Histomorphometric decorin and TGF-β2 protein expression patterns in eight-week heterotopic bone implants also discriminated the two non-bone-forming hMSC. We highlight progress towards prompt osteogenic potency assays, needed by current clinical trials to accelerate improved intervention with enhanced stem cell therapy for serious bone fractures.
Collapse
Affiliation(s)
- Augustin M. Ofiteru
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania; (D.F.B.); (M.I.)
| | - Diana F. Becheru
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania; (D.F.B.); (M.I.)
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania
| | - Sami Gharbia
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (S.G.); (C.B.); (H.H.); (B.M.); (A.H.)
| | - Cornel Balta
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (S.G.); (C.B.); (H.H.); (B.M.); (A.H.)
| | - Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (S.G.); (C.B.); (H.H.); (B.M.); (A.H.)
| | - Bianca Mladin
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (S.G.); (C.B.); (H.H.); (B.M.); (A.H.)
| | - Mariana Ionita
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania; (D.F.B.); (M.I.)
| | - Anca Hermenean
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (S.G.); (C.B.); (H.H.); (B.M.); (A.H.)
| | - Jorge S. Burns
- Faculty of Medical Engineering, University Politehnica of Bucharest, Gh Polizu 1-7, 011061 Bucharest, Romania; (D.F.B.); (M.I.)
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
25
|
Kowal JM, Schmal H, Halekoh U, Hjelmborg JB, Kassem M. Single-cell high-content imaging parameters predict functional phenotype of cultured human bone marrow stromal stem cells. Stem Cells Transl Med 2019; 9:189-202. [PMID: 31758755 PMCID: PMC6988772 DOI: 10.1002/sctm.19-0171] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/17/2019] [Indexed: 12/17/2022] Open
Abstract
Cultured human bone marrow stromal (mesenchymal) stem cells (hBM-MSCs) are heterogenous cell populations exhibiting variable biological properties. Quantitative high-content imaging technology allows identification of morphological markers at a single cell resolution that are determinant for cellular functions. We determined the morphological characteristics of cultured primary hBM-MSCs and examined their predictive value for hBM-MSC functionality. BM-MSCs were isolated from 56 donors and characterized for their proliferative and differentiation potential. We correlated these data with cellular and nuclear morphological features determined by Operetta; a high-content imaging system. Cell area, cell geometry, and nucleus geometry of cultured hBM-MSCs exhibited significant correlation with expression of hBM-MSC membrane markers: ALP, CD146, and CD271. Proliferation capacity correlated negatively with cell and nucleus area and positively with cytoskeleton texture features. In addition, in vitro differentiation to osteoblasts as well as in vivo heterotopic bone formation was associated with decreased ratio of nucleus width to length. Multivariable analysis applying a stability selection procedure identified nuclear geometry and texture as predictors for hBM-MSCs differentiation potential to osteoblasts or adipocytes. Our data demonstrate that by employing a limited number of cell morphological characteristics, it is possible to predict the functional phenotype of cultured hBM-MSCs and thus can be used as a screening test for "quality" of hBM-MSCs prior their use in clinical protocols.
Collapse
Affiliation(s)
- Justyna M Kowal
- Department of Endocrinology and Metabolism, Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Hagen Schmal
- Department of Orthopedics and Traumatology, Odense University Hospital, Odense, Denmark
| | - Ulrich Halekoh
- Department of Epidemiology, Biostatistics and Biodemography, Odense University Hospital, Odense, Denmark
| | - Jacob B Hjelmborg
- Department of Epidemiology, Biostatistics and Biodemography, Odense University Hospital, Odense, Denmark
| | - Moustapha Kassem
- Department of Endocrinology and Metabolism, Molecular Endocrinology Laboratory (KMEB), Odense University Hospital, University of Southern Denmark, Odense, Denmark.,Department of Cellular and Molecular Medicine, Danish Stem Cell Center (DanStem), University of Copenhagen, Copenhagen, Denmark.,Stem Cell Unit, Faculty of Medicine, King Saud University, Riyadh, KSA
| |
Collapse
|