1
|
Budeus B, Kroepel C, Stasch LM, Klein D. Matrix-free human lung organoids derived from induced pluripotent stem cells to model lung injury. Stem Cell Res Ther 2024; 15:468. [PMID: 39696649 DOI: 10.1186/s13287-024-04106-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Organoids, as near-physiological 3D culture systems, offer new opportunities to study the pathogenesis of various organs in mimicking the cellular complexity and functionality of human organs. METHOD Here we used a quite simple and very practicable method to successfully generate induced pluripotent stem cell (iPSC)-derived human lung organoids (LuOrg) in a matrix-free manner as an alternative to the widely used preclinical mouse models in order to investigate normal lung damage in detail and as close as possible to the patient. We performed detailed morphological and molecular analyses, including bulk and single cell RNA sequencing, of generated lung organoids and evaluated the quality and robustness of our model as a potential in vitro platform for lung diseases, namely radiation-induced lung injury. RESULTS A matrix-free method for differentiation of iPSCs can be used to obtain lung organoids that morphologically reflect the target tissue of the human lung very well, especially with regard to the cellular composition. The different cellular fates were investigated following the genotoxic stress induced by radiation and revealed further insights in the radiation-sensitivity of the different lung cells. Finally, we provide cellular gene sets found to be induced in the different lung organoid cellular subsets after irradiation, which could be used as additional RT response and particularly senescence gene sets in future studies. CONCLUSION By establishing these free-floating LuOrgs for the investigation of cancer therapeutic approaches as a new and patient-oriented in vitro platform particularly in experimental radiooncology, not only a reduction in the number of experimental animals, but also an adequately and meaningfully replacement of corresponding animal experiments can be achieved.
Collapse
Affiliation(s)
- Bettina Budeus
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Chiara Kroepel
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lisa Marie Stasch
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
2
|
Behnke J, Goetz MJ, Holzfurtner L, Korte P, Weiss A, Shahzad T, Wilhelm J, Schermuly RT, Rivetti S, Bellusci S, Ehrhardt H. Senescence of lung mesenchymal stem cells of preterm infants by cyclic stretch and hyperoxia via p21. Am J Physiol Lung Cell Mol Physiol 2024; 327:L694-L711. [PMID: 39316679 PMCID: PMC11563592 DOI: 10.1152/ajplung.00355.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/19/2024] [Accepted: 09/02/2024] [Indexed: 09/26/2024] Open
Abstract
Phenotype distortion of lung resident mesenchymal stem cells (MSC) in preterm infants is a hallmark event in the pathogenesis of bronchopulmonary dysplasia (BPD). Here, we evaluated the impact of cyclic mechanical stretch (CMS) and hyperoxia (HOX). The negative action of HOX on proliferation and cell death was more pronounced at 80% than at 40%. Although the impact of CMS alone was modest, CMS plus HOX displayed the strongest effect sizes. Exposure to CMS and/or HOX induced the downregulation of PDGFRα, and cellular senescence preceded by p21 accumulation. p21 interference interfered with cellular senescence and resulted in aggravated cell death, arguing for a prosurvival mechanism. HOX 40% and limited exposure to HOX 80% prevailed in a reversible phenotype with reuptake of proliferation, while prolonged exposure to HOX 80% resulted in definite MSC growth arrest. Our mechanistic data explain how HOX and CMS induce the effects on MSC phenotype disruption. The results are congruent with the clinical observation that preterm infants requiring supplemental oxygen plus mechanical ventilation are at particular risk for BPD. Although inhibiting p21 is not a feasible approach, limiting the duration and magnitude of the exposures is promising.NEW & NOTEWORTHY Rarefication of lung mesenchymal stem cells (MSC) due to exposure to cyclic mechanical stretch (CMS) during mechanical ventilation with oxygen-rich gas is a hallmark of bronchopulmonary dysplasia in preterm infants, but the pathomechanistic understanding is incomplete. Our studies identify a common signaling mechanism mediated by p21 accumulation, leading to cellular senescence and cell death, most pronounced during the combined exposure with in principle reversible phenotype change depending on strength and duration of exposures.
Collapse
Affiliation(s)
- Judith Behnke
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Maurizio J Goetz
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Lena Holzfurtner
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Pauline Korte
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Astrid Weiss
- Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Tayyab Shahzad
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Jochen Wilhelm
- Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Ralph T Schermuly
- Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Stefano Rivetti
- Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Saverio Bellusci
- Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary Institute (CPI), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Institute for Lung Health (ILH), Giessen, Germany
| | - Harald Ehrhardt
- Department of General Pediatrics and Neonatology, Justus-Liebig-University Giessen and Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
- Division of Neonatology and Pediatric Intensive Care Medicine, Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
3
|
Qian L, Zhang Z, Zhang R, Zheng X, Xiao B, Zhang X, Wu Y, Chen Y, Zhang X, Zhou P, Fu Q, Kang T, Gao Y. Activated STING-containing R-EVs from iPSC-derived MSCs promote antitumor immunity. Cancer Lett 2024; 597:217081. [PMID: 38909776 DOI: 10.1016/j.canlet.2024.217081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
We recently revealed that activated STING is secreted into RAB22A-induced extracellular vesicles (R-EVs) and promotes antitumor immunity in cancer cells. Whether mesenchymal stem cell (MSC)-derived R-EVs containing activated STING can be used as a novel antitumor immunotherapy remains unclear, as MSC-derived EVs are promising cell-free therapeutics due to their superior biocompatibility and safety, as well as low immunogenicity. Here, we report that induced pluripotent stem cell (iPSC)-derived MSCs can generate R-EVs with a size and mechanism of formation that are similar to those of R-EVs produced from cancer cells. Furthermore, these MSC-derived R-EVs containing activated STING induced IFNβ expression in recipient THP-1 monocytes and antitumor immunity in mice. Our findings reveal that the use of MSC-derived R-EVs containing activated STING is a promising cell-free strategy for antitumor immunity.
Collapse
Affiliation(s)
- Linxia Qian
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China; School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Zhonghan Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Ruhua Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Xueping Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Beibei Xiao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Xiaomin Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Yuanzhong Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Yang Chen
- Departments of Endodontics, Stomatological Hospital, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Xingding Zhang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Penghui Zhou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China
| | - Qingling Fu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| | - Ying Gao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong, China.
| |
Collapse
|
4
|
Sentek H, Braun A, Budeus B, Klein D. Non-small cell lung cancer cells and concomitant cancer therapy induce a resistance-promoting phenotype of tumor-associated mesenchymal stem cells. Front Oncol 2024; 14:1406268. [PMID: 39011489 PMCID: PMC11246879 DOI: 10.3389/fonc.2024.1406268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/30/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction The tumor microenvironment gained attraction over the last decades as stromal cells significantly impact on tumor development, progression and metastasis, and immune evasion as well as on cancer therapy resistance. We previously reported that lung-resident mesenchymal stem cells (MSCs) were mobilized and activated in non-small cell lung cancer (NSCLC) progression and could even mediate radiation resistance in co-cultured NSCLC cells. Methods We investigated how MSCs were affected by NSCLC cells in combination with cancer (radiation) therapy in indirect co-cultures using tumor-conditioned medium and Transwells or direct three-dimensional NSCLC-MSC spheroid co-cultures in order to unravel the resistance-mediating action of tumor-associated MSCs. Results Although no obvious phenotypic and functional alterations in MSCs following NSCLC co-culture could be observed, MSC senescence was induced following co-applied radiotherapy (RT). Global gene expression profiling, in combination with gene set enrichment analysis upon treatment, was used to confirm the senescent phenotype of irradiated MSC and to reveal relevant senescence-associated secretory phenotype (SASP) factors that could meditate NSCLC RT resistance. We identified senescent tumor-associated MSC-derived serine proteinase inhibitor (serpin) E1/PAI1 as potential SASP factor mediating NSCLC progression and RT resistance. Discussion Specified intra-tumor-stroma interactions and cell type-specific pro-tumorigenic functions could not only improve lung cancer classification but could even be used for a more precise profiling of individual patients, finally paving an additional way for the discovery of potential drug targets for NSCLC patients.
Collapse
Affiliation(s)
| | | | | | - Diana Klein
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| |
Collapse
|
5
|
Prusinski C, Yan D, Klasova J, McVeigh KH, Shah SZ, Fermo OP, Kubrova E, Farr EM, Williams LC, Gerardo-Manrique G, Bergquist TF, Pham SM, Engelberg-Cook E, Hare JM, March KL, Caplan AI, Qu W. Multidisciplinary Management Strategies for Long COVID: A Narrative Review. Cureus 2024; 16:e59478. [PMID: 38826995 PMCID: PMC11142761 DOI: 10.7759/cureus.59478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2024] [Indexed: 06/04/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused millions of infections to date and has led to a worldwide pandemic. Most patients had a complete recovery from the acute infection, however, a large number of the affected individuals experienced symptoms that persisted more than 3 months after diagnosis. These symptoms most commonly include fatigue, memory difficulties, brain fog, dyspnea, cough, and other less common ones such as headache, chest pain, paresthesias, mood changes, muscle pain, and weakness, skin rashes, and cardiac, endocrine, renal and hepatic manifestations. The treatment of this syndrome remains challenging. A multidisciplinary approach to address combinations of symptoms affecting multiple organ systems has been widely adopted. This narrative review aims to bridge the gap surrounding the broad treatment approaches by providing an overview of multidisciplinary management strategies for the most common long COVID conditions.
Collapse
Affiliation(s)
| | - Dan Yan
- Department of Pain Medicine, Mayo Clinic, Jacksonville, USA
| | - Johana Klasova
- Department of Pain Medicine, Mayo Clinic, Jacksonville, USA
| | | | - Sadia Z Shah
- Department of Transplantation, Mayo Clinic, Jacksonville, USA
| | - Olga P Fermo
- Department of Neurology, Mayo Clinic, Jacksonville, USA
| | - Eva Kubrova
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, USA
| | - Ellen M Farr
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, USA
| | - Linus C Williams
- Department of Pain Medicine, Mayo Clinic, Jacksonville, USA
- Department of Internal Medicine, Lahey Hospital & Medical Center, Burlington, USA
| | | | - Thomas F Bergquist
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, USA
| | - Si M Pham
- Department of Cardiothoracic Surgery, Mayo Clinic, Jacksonville, USA
| | | | - Joshua M Hare
- Department of Medicine, Cardiovascular Division and the Interdisciplinary Stem Cell Institute, Miami, USA
| | - Keith L March
- Division of Cardiovascular Medicine, Center for Regenerative Medicine, University of Florida, Gainesville, USA
| | - Arnold I Caplan
- Department of Biology, Case Western Reserve University School of Medicine, Cleveland, USA
| | - Wenchun Qu
- Department of Pain Medicine, Mayo Clinic, Jacksonville, USA
- Center for Regenerative Biotherapeutics, Mayo Clinic, Jacksonville, USA
| |
Collapse
|
6
|
Walewska A, Janucik A, Tynecka M, Moniuszko M, Eljaszewicz A. Mesenchymal stem cells under epigenetic control - the role of epigenetic machinery in fate decision and functional properties. Cell Death Dis 2023; 14:720. [PMID: 37932257 PMCID: PMC10628230 DOI: 10.1038/s41419-023-06239-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Mesenchymal stem cells (mesenchymal stromal cells, MSC) are multipotent stem cells that can differentiate into cells of at least three mesodermal lineages, namely adipocytes, osteoblasts, and chondrocytes, and have potent immunomodulatory properties. Epigenetic modifications are critical regulators of gene expression and cellular differentiation of mesenchymal stem cells (MSCs). Epigenetic machinery controls MSC differentiation through direct modifications to DNA and histones. Understanding the role of epigenetic machinery in MSC is crucial for the development of effective cell-based therapies for degenerative and inflammatory diseases. In this review, we summarize the current understanding of the role of epigenetic control of MSC differentiation and immunomodulatory properties.
Collapse
Affiliation(s)
- Alicja Walewska
- Centre of Regenerative Medicine, Medical University of Bialystok, ul. Waszyngtona 15B, 15-269, Bialystok, Poland
| | - Adrian Janucik
- Centre of Regenerative Medicine, Medical University of Bialystok, ul. Waszyngtona 15B, 15-269, Bialystok, Poland
| | - Marlena Tynecka
- Centre of Regenerative Medicine, Medical University of Bialystok, ul. Waszyngtona 15B, 15-269, Bialystok, Poland
| | - Marcin Moniuszko
- Centre of Regenerative Medicine, Medical University of Bialystok, ul. Waszyngtona 15B, 15-269, Bialystok, Poland
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, ul. Waszyngtona 13, 15-269, Bialystok, Poland
- Department of Allergology and Internal Medicine, Medical University of Bialystok, ul. M. Sklodowskiej-Curie 24A, 15-276, Bialystok, Poland
| | - Andrzej Eljaszewicz
- Centre of Regenerative Medicine, Medical University of Bialystok, ul. Waszyngtona 15B, 15-269, Bialystok, Poland.
- Tissue and Cell Bank, Medical University of Bialystok Clinical Hospital, ul. Waszyngtona 13, 15-069, Bialystok, Poland.
| |
Collapse
|
7
|
Chen L, Zhang N, Huang Y, Zhang Q, Fang Y, Fu J, Yuan Y, Chen L, Chen X, Xu Z, Li Y, Izawa H, Xiang C. Multiple Dimensions of using Mesenchymal Stem Cells for Treating Liver Diseases: From Bench to Beside. Stem Cell Rev Rep 2023; 19:2192-2224. [PMID: 37498509 DOI: 10.1007/s12015-023-10583-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
Liver diseases impose a huge burden worldwide. Although hepatocyte transplantation has long been considered as a potential strategy for treating liver diseases, its clinical implementation has created some obvious limitations. As an alternative strategy, cell therapy, particularly mesenchymal stem cell (MSC) transplantation, is widely used in treating different liver diseases, including acute liver disease, acute-on-chronic liver failure, hepatitis B/C virus, autoimmune hepatitis, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, alcoholic liver disease, liver fibrosis, liver cirrhosis, and hepatocellular carcinoma. Here, we summarize the status of MSC transplantation in treating liver diseases, focusing on the therapeutic mechanisms, including differentiation into hepatocyte-like cells, immunomodulating function with a variety of immune cells, paracrine effects via the secretion of various cytokines and extracellular vesicles, and facilitation of homing and engraftment. Some improved perspectives and current challenges are also addressed. In summary, MSCs have great potential in the treatment of liver diseases based on their multi-faceted characteristics, and more accurate mechanisms and novel therapeutic strategies stemming from MSCs will facilitate clinical practice.
Collapse
Affiliation(s)
- Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Ning Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yuqi Huang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Qi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yangxin Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Jiamin Fu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Yin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Lu Chen
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, 311215, People's Republic of China
| | - Xin Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310027, People's Republic of China
| | - Zhenyu Xu
- Innovative Precision Medicine (IPM) Group, Hangzhou, Zhejiang, 311215, People's Republic of China
| | - Yifei Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China
| | - Hiromi Izawa
- Jingugaien Woman Life Clinic, Jingu-Gaien 3-39-5 2F, Shibuya-Ku, Tokyo, Japan
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, People's Republic of China.
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Hangzhou, Zhejiang, 310003, People's Republic of China.
| |
Collapse
|
8
|
Budeus B, Unger K, Hess J, Sentek H, Klein D. Comparative computational analysis to distinguish mesenchymal stem cells from fibroblasts. Front Immunol 2023; 14:1270493. [PMID: 37822926 PMCID: PMC10562561 DOI: 10.3389/fimmu.2023.1270493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/30/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) are considered to be the most promising stem cell type for cell-based therapies in regenerative medicine. Based on their potential to home to diseased body sites following a therapeutically application, these cells could (i) differentiate then into organ-specific cell types to locally restore injured cells or, most prominently, (ii) foster tissue regeneration including immune modulations more indirectly by secretion of protective growth factors and cytokines. As tissue-resident stem cells of mesenchymal origin, these cells are morphologically and even molecularly- at least concerning the classical marker genes- indistinguishable from similar lineage cells, particularly fibroblasts. Methods Here we used microarray-based gene expression and global DNA methylation analyses as well as accompanying computational tools in order to specify differences between MSCs and fibroblasts, to further unravel potential identity genes and to highlight MSC signaling pathways with regard to their trophic and immunosuppressive action. Results We identified 1352 differentially expressed genes, of which in the MSCs there is a strong signature for e.g., KRAS signaling, known to play essential role in stemness maintenance, regulation of coagulation and complement being decisive for resolving inflammatory processes, as well as of wound healing particularly important for their regenerative capacity. Genes upregulated in fibroblasts addressed predominately transcription and biosynthetic processes and mapped morphological features of the tissue. Concerning the cellular identity, we specified the already known HOX code for MSCs, established a potential HOX code for fibroblasts, and linked certain HOX genes to functional cell-type-specific properties. Accompanied methylation profiles revealed numerous regions, especially in HOX genes, being differentially methylated, which might provide additional biomarker potential. Discussion Conclusively, transcriptomic together with epigenetic signatures can be successfully be used for the definition (cellular identity) of MSCs versus fibroblasts as well as for the determination of the superior functional properties of MSCs, such as their immunomodulatory potential.
Collapse
Affiliation(s)
- Bettina Budeus
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Clinical Cooperation Group Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Clinical Cooperation Group Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| | - Hanna Sentek
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
9
|
Liu D, Xu C, Jiang L, Zhu X. Pulmonary endogenous progenitor stem cell subpopulation: Physiology, pathogenesis, and progress. JOURNAL OF INTENSIVE MEDICINE 2023; 3:38-51. [PMID: 36789358 PMCID: PMC9924023 DOI: 10.1016/j.jointm.2022.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/09/2022] [Accepted: 08/13/2022] [Indexed: 06/18/2023]
Abstract
Lungs are structurally and functionally complex organs consisting of diverse cell types from the proximal to distal axis. They have direct contact with the external environment and are constantly at risk of various injuries. Capable to proliferate and differentiate, pulmonary endogenous progenitor stem cells contribute to the maintenance of lung structure and function both under homeostasis and following injuries. Discovering candidate pulmonary endogenous progenitor stem cell types and underlying regenerative mechanisms provide insights into therapeutic strategy development for lung diseases. In this review, we reveal their compositions, roles in lung disease pathogenesis and injury repair, and the underlying mechanisms. We further underline the advanced progress in research approach and potential therapy for lung regeneration. We also demonstrate the feasibility and prospects of pulmonary endogenous stem cell transplantation for lung disease treatment.
Collapse
Affiliation(s)
- Di Liu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Chufan Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Xiaoyan Zhu
- Department of Physiology, Navy Medical University, 800 Xiangyin Road, Shanghai 200433, China
| |
Collapse
|
10
|
Steens J, Klein D. HOX genes in stem cells: Maintaining cellular identity and regulation of differentiation. Front Cell Dev Biol 2022; 10:1002909. [PMID: 36176275 PMCID: PMC9514042 DOI: 10.3389/fcell.2022.1002909] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Stem cells display a unique cell type within the body that has the capacity to self-renew and differentiate into specialized cell types. Compared to pluripotent stem cells, adult stem cells (ASC) such as mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) exhibit restricted differentiation capabilities that are limited to cell types typically found in the tissue of origin, which implicates that there must be a certain code or priming determined by the tissue of origin. HOX genes, a subset of homeobox genes encoding transcription factors that are generally repressed in undifferentiated pluripotent stem cells, emerged here as master regulators of cell identity and cell fate during embryogenesis, and in maintaining this positional identity throughout life as well as specifying various regional properties of respective tissues. Concurrently, intricate molecular circuits regulated by diverse stem cell-typical signaling pathways, balance stem cell maintenance, proliferation and differentiation. However, it still needs to be unraveled how stem cell-related signaling pathways establish and regulate ASC-specific HOX expression pattern with different temporal-spatial topography, known as the HOX code. This comprehensive review therefore summarizes the current knowledge of specific ASC-related HOX expression patterns and how these were integrated into stem cell-related signaling pathways. Understanding the mechanism of HOX gene regulation in stem cells may provide new ways to manipulate stem cell fate and function leading to improved and new approaches in the field of regenerative medicine.
Collapse
|
11
|
Sun W, Liu X, Yang X, Jing X, Duan C, Yang G, Wu C, Huang H, Luo Q, Xia S, Zhang Q, Yang Y, Xu Z. SENP1 regulates the transformation of lung resident mesenchymal stem cells and is associated with idiopathic pulmonary fibrosis progression. Cell Commun Signal 2022; 20:104. [PMID: 35836260 PMCID: PMC9281027 DOI: 10.1186/s12964-022-00921-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lung resident mesenchymal stem cells (LR-MSCs) play an important role in idiopathic pulmonary fibrosis (IPF) by transforming into myofibroblasts, thereby losing their repair ability. Evidence suggests that key proteins of multiple signaling pathways are involved in myofibroblast differentiation of LR-MSCs, such as β-Catenin and GLI family zinc finger 1 (GLI1). These proteins are regulated by SUMO (small ubiquitin-like modifier) modification, which is a post-translational modification that promotes protein degradation, while Sumo specific protein 1 (SENP1)-mediated deSUMOylation produces the opposite biological effects. Therefore, we speculated that SENP1 might be a potential target for treating pulmonary fibrosis by preventing the myofibroblast differentiation of LR-MSCs. METHODS LR-MSCs were isolated from mice by using immunomagnetic beads. The extracted LR-MSCs were identified by flow cytometric analysis and multilineage differentiation assays. Lentivirus packaged shRNA silenced the expression of SENP1 in vitro and vivo. The silencing efficacy of SENP1 was verified by real-time quantitative PCR. The effect of down-regulated SENP1 on the myofibroblast differentiation of LR-MSCs was assessed by Immunofluorescence and Western blot. Immunoprecipitation was used to clarify that SENP1 was a key target for regulating the activity of multiple signaling pathways in the direction of LR-MSCs differentiation. LR-MSCs resident in the lung was analyzed with in vivo imaging system. HE and Masson staining was used to evaluate the therapeutic effect of LR-MSCs with SENP1 down-regulation on the lung of BLM mice. RESULTS In this study, we found that the myofibroblast differentiation of LR-MSCs in IPF lung tissue was accompanied by enhanced SENP1-mediated deSUMOylation. The expression of SENP1 increased in LR-MSCs transition of bleomycin (BLM)-induced lung fibrosis. Interfering with expression of SENP1 inhibited the transformation of LR-MSCs into myofibroblasts in vitro and in vivo and restored their therapeutic effect in BLM lung fibrosis. In addition, activation of the WNT/β-Catenin and Hedgehog/GLI signaling pathways depends on SENP1-mediated deSUMOylation. CONCLUSIONS SENP1 might be a potential target to restore the repair function of LR-MSCs and treat pulmonary fibrosis. Video Abstract.
Collapse
Affiliation(s)
- Wei Sun
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, No. 32, Section 2, West 1st ring road, Qingyang District, Chengdu, 610072, Sichuan, China
| | - Xiaoshu Liu
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, No. 32, Section 2, West 1st ring road, Qingyang District, Chengdu, 610072, Sichuan, China
| | - Xiaoyu Yang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China
| | - Xiaoyan Jing
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China
| | - Chunyan Duan
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, No. 32, Section 2, West 1st ring road, Qingyang District, Chengdu, 610072, Sichuan, China
| | - Ganghao Yang
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, No. 32, Section 2, West 1st ring road, Qingyang District, Chengdu, 610072, Sichuan, China
| | - Chi Wu
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, No. 32, Section 2, West 1st ring road, Qingyang District, Chengdu, 610072, Sichuan, China
| | - Hui Huang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China
| | - Qun Luo
- State Key Laboratory of Respiratory Disease, National Clinical Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shu Xia
- State Key Laboratory of Respiratory Disease, National Clinical Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qian Zhang
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China
| | - Yang Yang
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, No. 32, Section 2, West 1st ring road, Qingyang District, Chengdu, 610072, Sichuan, China.
| | - Zuojun Xu
- Department of Respiratory and Critical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, China.
| |
Collapse
|
12
|
Exploring the Immunomodulatory Aspect of Mesenchymal Stem Cells for Treatment of Severe Coronavirus Disease 19. Cells 2022; 11:cells11142175. [PMID: 35883618 PMCID: PMC9322532 DOI: 10.3390/cells11142175] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/06/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is an enveloped, positive sense, single stranded RNA (+ssRNA) virus, belonging to the genus Betacoronavirus and family Coronaviridae. It is primarily transmitted from infected persons to healthy ones through inhalation of virus-laden respiratory droplets. After an average incubation period of 2–14 days, the majority of infected individuals remain asymptomatic and/or mildly symptomatic, whereas the remaining individuals manifest a myriad of clinical symptoms, including fever, sore throat, dry cough, fatigue, chest pain, and breathlessness. SARS-CoV-2 exploits the angiotensin converting enzyme 2 (ACE-2) receptor for cellular invasion, and lungs are amongst the most adversely affected organs in the body. Thereupon, immune responses are elicited, which may devolve into a cytokine storm characterized by enhanced secretion of multitude of inflammatory cytokines/chemokines and growth factors, such as interleukin (IL)-2, IL-6, IL-7, IL-8, IL-9, tumor necrosis factor alpha (TNF-α), granulocyte colony-stimulating factor (GCSF), basic fibroblast growth factor 2 (bFGF2), monocyte chemotactic protein-1 (MCP1), interferon-inducible protein 10 (IP10), macrophage inflammatory protein 1A (MIP1A), platelet-derived growth factor subunit B (PDGFB), and vascular endothelial factor (VEGF)-A. The systemic persistence of inflammatory molecules causes widespread histological injury, leading to functional deterioration of the infected organ(s). Although multiple treatment modalities with varying effectiveness are being employed, nevertheless, there is no curative COVID-19 therapy available to date. In this regard, one plausible supportive therapeutic modality may involve administration of mesenchymal stem cells (MSCs) and/or MSC-derived bioactive factors-based secretome to critically ill COVID-19 patients with the intention of accomplishing better clinical outcome owing to their empirically established beneficial effects. MSCs are well established adult stem cells (ASCs) with respect to their immunomodulatory, anti-inflammatory, anti-oxidative, anti-apoptotic, pro-angiogenic, and pro-regenerative properties. The immunomodulatory capabilities of MSCs are not constitutive but rather are highly dependent on a holistic niche. Following intravenous infusion, MSCs are known to undergo considerable histological trapping in the lungs and, therefore, become well positioned to directly engage with lung infiltrating immune cells, and thereby mitigate excessive inflammation and reverse/regenerate damaged alveolar epithelial cells and associated tissue post SARS-CoV-2 infection. Considering the myriad of abovementioned biologically beneficial properties and emerging translational insights, MSCs may be used as potential supportive therapy to counteract cytokine storms and reduce disease severity, thereby facilitating speedy recovery and health restoration.
Collapse
|
13
|
Yang X, Sun W, Jing X, Zhang Q, Huang H, Xu Z. Endoplasmic reticulum stress modulates the fate of lung resident mesenchymal stem cell to myofibroblast via C/EBP homologous protein during pulmonary fibrosis. Stem Cell Res Ther 2022; 13:279. [PMID: 35765096 PMCID: PMC9241222 DOI: 10.1186/s13287-022-02966-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/19/2022] [Indexed: 12/03/2022] Open
Abstract
Background As a fatal interstitial lung disease, idiopathic pulmonary fibrosis (IPF) was characterized by the insidious proliferation of extracellular matrix (ECM)-producing mesenchymal cells. Recent studies have demonstrated that lung resident mesenchymal/stromal cells (LR-MSC) are the source of myofibroblasts. Endoplasmic reticulum (ER) stress is prominent in IPF lung. This study sought to investigate the effects of ER stress on the behavior of LR-MSC during pulmonary fibrosis. Methods ER stress and myofibroblast differentiation of LR-MSC in patients with IPF were evaluated. Primary mouse LR-MSC was harvested and used in vitro for testing the effects of ER stress and C/EBP homologous protein (CHOP) on LR-MSC. Adoptive transplantation of LR-MSC to bleomycin-induced pulmonary fibrosis was done to test the in vivo behavior of LR-MSC and its influence on pulmonary fibrosis. Results We found that myofibroblast differentiation of LR-MSC is associated with ER stress in IPF and bleomycin-induced mouse fibrotic lung. Tunicamycin-induced ER stress impairs the paracrine, migration, and reparative function of mouse LR-MSC to injured type 2 alveolar epithelial cells MLE-12. Overexpression of the ER stress responder C/EBP homologous protein (CHOP) facilitates the TGFβ1-induced myofibroblast transformation of LR-MSC via boosting the TGFβ/SMAD signaling pathway. CHOP knockdown facilitates engraftment and inhibits the myofibroblast transformation of LR-MSC during bleomycin-induced pulmonary fibrosis, thus promoting the efficacy of adopted LR-MSC in alleviating pulmonary fibrosis. Conclusion Our work revealed a novel role that ER stress involved in pulmonary fibrosis by influencing the fate of LR-MSC and transformed to “crime factor” myofibroblast, during which CHOP acts as the key modulator. These results indicate that pharmacies targeting CHOP or therapies based on CHOP knockdown LR-MSC may be promising ways to treat pulmonary fibrosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02966-1.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, People's Republic of China
| | - Wei Sun
- Department of Respiratory and Critical Care Medicine, Sichuan Provincial People's Hospital of Sichuan Academy of Medical Sciences, Chengdu, People's Republic of China
| | - Xiaoyan Jing
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, People's Republic of China
| | - Qian Zhang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, People's Republic of China
| | - Hui Huang
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, People's Republic of China
| | - Zuojun Xu
- Department of Respiratory and Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuai Fu Yuan Street, Dong Cheng District, Beijing, 100730, People's Republic of China.
| |
Collapse
|
14
|
Li C, Wang B. Mesenchymal Stem/Stromal Cells in Progressive Fibrogenic Involvement and Anti-Fibrosis Therapeutic Properties. Front Cell Dev Biol 2022; 10:902677. [PMID: 35721482 PMCID: PMC9198494 DOI: 10.3389/fcell.2022.902677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Fibrosis refers to the connective tissue deposition and stiffness usually as a result of injury. Fibrosis tissue-resident mesenchymal cells, including fibroblasts, myofibroblast, smooth muscle cells, and mesenchymal stem/stromal cells (MSCs), are major players in fibrogenic processes under certain contexts. Acknowledging differentiation potential of MSCs to the aforementioned other types of mesenchymal cell lineages is essential for better understanding of MSCs’ substantial contributions to progressive fibrogenesis. MSCs may represent a potential therapeutic option for fibrosis resolution owing to their unique pleiotropic functions and therapeutic properties. Currently, clinical trial efforts using MSCs and MSC-based products are underway but clinical data collected by the early phase trials are insufficient to offer better support for the MSC-based anti-fibrotic therapies. Given that MSCs are involved in the coagulation through releasing tissue factor, MSCs can retain procoagulant activity to be associated with fibrogenic disease development. Therefore, MSCs’ functional benefits in translational applications need to be carefully balanced with their potential risks.
Collapse
Affiliation(s)
- Chenghai Li
- Stem Cell Program of Clinical Research Center, People’s Hospital of Zhengzhou University and Henan Provincial People’s Hospital, Zhengzhou, China
- Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan University, Zhengzhou, China
- *Correspondence: Chenghai Li, ; Bin Wang,
| | - Bin Wang
- Department of Neurosurgery, People’s Hospital of Zhengzhou University and Henan Provincial People’s Hospital, Zhengzhou, China
- *Correspondence: Chenghai Li, ; Bin Wang,
| |
Collapse
|
15
|
Sentek H, Klein D. Lung-Resident Mesenchymal Stem Cell Fates within Lung Cancer. Cancers (Basel) 2021; 13:cancers13184637. [PMID: 34572864 PMCID: PMC8472774 DOI: 10.3390/cancers13184637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Lung cancer remains the leading cause of cancer-related deaths worldwide. Herein, the heterogeneous tumor stroma decisively impacts on tumor progression, therapy resistance, and, thus, poor clinical outcome. Among the numerous non-epithelial cells constructing the complex environment of lung carcinomas, mesenchymal stem cells (MSC) gained attraction being stromal precursor cells that could be recruited and ‘educated’ by lung cancer cells to adopt a tumor-associated MSC phenotype, serve as source for activated fibroblasts and presumably for vascular mural cells finally reinforcing tumor progression. Lung-resident MSCs should be considered as ‘local MSCs in stand by’ ready to be arranged within the cancer stroma. Abstract Lung-resident mesenchymal stem cells (LR-MSCs) are non-hematopoietic multipotent stromal cells that predominately reside adventitial within lung blood vessels. Based on their self-renewal and differentiation properties, LR-MSCs turned out to be important regulators of normal lung homeostasis. LR-MSCs exert beneficial effects mainly by local secretion of various growth factors and cytokines that in turn foster pulmonary regeneration including suppression of inflammation. At the same time, MSCs derived from various tissues of origins represent the first choice of cells for cell-based therapeutic applications in clinical medicine. Particularly for various acute as well as chronic lung diseases, the therapeutic applications of exogenous MSCs were shown to mediate beneficial effects, hereby improving lung function and survival. In contrast, endogenous MSCs of normal lungs seem not to be sufficient for lung tissue protection or repair following a pathological trigger; LR-MSCs could even contribute to initiation and/or progression of lung diseases, particularly lung cancer because of their inherent tropism to migrate towards primary tumors and metastatic sites. However, the role of endogenous LR-MSCs to be multipotent tumor-associated (stromal) precursors remains to be unraveled. Here, we summarize the recent knowledge how ‘cancer-educated’ LR-MSCs impact on lung cancer with a focus on mesenchymal stem cell fates.
Collapse
Affiliation(s)
| | - Diana Klein
- Correspondence: ; Tel.: +49-(0)-201-7238-3342
| |
Collapse
|
16
|
Samarelli AV, Tonelli R, Heijink I, Martin Medina A, Marchioni A, Bruzzi G, Castaniere I, Andrisani D, Gozzi F, Manicardi L, Moretti A, Cerri S, Fantini R, Tabbì L, Nani C, Mastrolia I, Weiss DJ, Dominici M, Clini E. Dissecting the Role of Mesenchymal Stem Cells in Idiopathic Pulmonary Fibrosis: Cause or Solution. Front Pharmacol 2021; 12:692551. [PMID: 34290610 PMCID: PMC8287856 DOI: 10.3389/fphar.2021.692551] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is one of the most aggressive forms of idiopathic interstitial pneumonias, characterized by chronic and progressive fibrosis subverting the lung's architecture, pulmonary functional decline, progressive respiratory failure, and high mortality (median survival 3 years after diagnosis). Among the mechanisms associated with disease onset and progression, it has been hypothesized that IPF lungs might be affected either by a regenerative deficit of the alveolar epithelium or by a dysregulation of repair mechanisms in response to alveolar and vascular damage. This latter might be related to the progressive dysfunction and exhaustion of the resident stem cells together with a process of cellular and tissue senescence. The role of endogenous mesenchymal stromal/stem cells (MSCs) resident in the lung in the homeostasis of these mechanisms is still a matter of debate. Although endogenous MSCs may play a critical role in lung repair, they are also involved in cellular senescence and tissue ageing processes with loss of lung regenerative potential. In addition, MSCs have immunomodulatory properties and can secrete anti-fibrotic factors. Thus, MSCs obtained from other sources administered systemically or directly into the lung have been investigated for lung epithelial repair and have been explored as a potential therapy for the treatment of lung diseases including IPF. Given these multiple potential roles of MSCs, this review aims both at elucidating the role of resident lung MSCs in IPF pathogenesis and the role of administered MSCs from other sources for potential IPF therapies.
Collapse
Affiliation(s)
- Anna Valeria Samarelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Roberto Tonelli
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy
| | - Irene Heijink
- University of Groningen, Departments of Pathology & Medical Biology and Pulmonology, GRIAC Research Institute, University Medical Center Groningen, Groningen, Netherlands
| | - Aina Martin Medina
- IdISBa (Institut d’Investigacio Sanitaria Illes Balears), Palma de Mallorca, Spain
| | - Alessandro Marchioni
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Giulia Bruzzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Ivana Castaniere
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy
| | - Dario Andrisani
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy
| | - Filippo Gozzi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena Reggio Emilia, Modena, Italy
| | - Linda Manicardi
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Antonio Moretti
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Stefania Cerri
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Riccardo Fantini
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Luca Tabbì
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Chiara Nani
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| | - Ilenia Mastrolia
- Laboratory of Cellular Therapy, Program of Cell Therapy and Immuno-Oncology, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Daniel J. Weiss
- Department of Medicine, University of Vermont, Burlington, VT, United States
| | - Massimo Dominici
- Oncology Unit, University Hospital of Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Enrico Clini
- Laboratory of Cell Therapies and Respiratory Medicine, Department of Medical and Surgical Sciences for Children and Adults University Hospital of Modena and Reggio Emilia, Modena, Italy
- University Hospital of Modena, Respiratory Diseases Unit, Department of Medical and Surgical Sciences, University of Modena Reggio Emilia, Modena, Italy
| |
Collapse
|
17
|
Steens J, Klar L, Hansel C, Slama A, Hager T, Jendrossek V, Aigner C, Klein D. The vascular nature of lung-resident mesenchymal stem cells. Stem Cells Transl Med 2020; 10:128-143. [PMID: 32830458 PMCID: PMC7780817 DOI: 10.1002/sctm.20-0191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/13/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Human lungs bear their own reservoir of endogenous mesenchymal stem cells (MSCs). Although described as located perivascular, the cellular identity of primary lung MSCs remains elusive. Here we investigated the vascular nature of lung‐resident MSCs (LR‐MSCs) using healthy human lung tissue. LR‐MSCs predominately reside within the vascular stem cell niche, the so‐called vasculogenic zone of adult lung arteries. Primary LR‐MSCs isolated from normal human lung tissue showed typical MSC characteristics in vitro and were phenotypically and functionally indistinguishable from MSCs derived from the vascular wall of adult human blood vessels (VW‐MSCs). Moreover, LR‐MSCs expressed the VW‐MSC‐specific HOX code a characteristic to discriminate VW‐MSCs from phenotypical similar cells. Thus, LR‐MSC should be considered as VW‐MSCs. Immunofluorescent analyses of non‐small lung cancer (NSCLC) specimen further confirmed the vascular adventitia as stem cell niche for LR‐MSCs, and revealed their mobilization and activation in NSCLC progression. These findings have implications for understanding the role of MSC in normal lung physiology and pulmonary diseases, as well as for the rational design of additional therapeutic approaches.
Collapse
Affiliation(s)
- Jennifer Steens
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Lea Klar
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Christine Hansel
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Alexis Slama
- Department of Thoracic Surgery and Surgical Endoscopy, Ruhrlandklinik-University Clinic Essen, Essen, Germany
| | - Thomas Hager
- Institute of Pathology, University Clinic Essen, University of Duisburg-Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery and Surgical Endoscopy, Ruhrlandklinik-University Clinic Essen, Essen, Germany
| | - Diana Klein
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, University Hospital, Essen, Germany
| |
Collapse
|