1
|
Lee JW, Cho JY. Comparative epigenetics of domestic animals: focusing on DNA accessibility and its impact on gene regulation and traits. J Vet Sci 2025; 26:e9. [PMID: 39901471 PMCID: PMC11799094 DOI: 10.4142/jvs.24259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/06/2024] [Accepted: 11/26/2024] [Indexed: 02/05/2025] Open
Abstract
IMPORTANCE Chromatin accessibility is vital for gene regulation, determining the ability of DNA-binding proteins to access the genomic regions and drive transcriptional activity, reflecting environmental changes. Although human and murine studies have advanced the understanding of chromatin dynamics, domestic animals remain comparatively underexplored despite their importance in agriculture and veterinary medicine. Investigating the accessibility of chromatin in these species is crucial for improving traits such as productivity, disease resistance, and environmental adaptation. This review assessed chromatin accessibility research in domestic animals, highlighting its significance in understanding and improving livestock traits. OBSERVATIONS This review outlines chromatin accessibility research in domestic animals, focusing on critical developmental processes, tissue-specific regulation, and economically significant traits. Advances in techniques, such as Assay for Transposase-Accessible Chromatin using sequencing, have enabled detailed mapping of regulatory elements, shedding light on epigenetic regulation of traits, such as muscle development and productivity. Comparative studies have uncovered conserved and species-specific cis-regulatory elements across multiple species. These findings offer insights into regulatory mechanisms that can enhance breeding strategies and animal management. In addition, high-throughput techniques, such as single-cell analysis and deep-learning models, have advanced the study of chromatin accessibility in lesser-studied species. CONCLUSIONS AND RELEVANCE Chromatin accessibility is crucial in gene regulation in domestic animals, influencing development, immune response, and productivity. Despite the progress, more comprehensive epigenomic datasets and cross-species analytical tools are needed to harness chromatin accessibility in domestic animal research. Understanding these mechanisms has practical applications in improving livestock traits, advancing breeding programs, and developing disease-resistant animals, highlighting the importance of integrating epigenetic and genomic tools for enhancing animal health and productivity.
Collapse
Affiliation(s)
- Jeong-Woon Lee
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK21 Plus and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul 08826, Korea
| | - Je-Yoel Cho
- Department of Biochemistry, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
- BK21 Plus and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
2
|
Tsukamoto M, Kimura K, Yoshida T, Tanaka M, Kuwamura M, Ayabe T, Ishihara G, Watanabe K, Okada M, Iijima M, Nakanishi M, Akutsu H, Sugiura K, Hatoya S. Generation of canine induced pluripotent stem cells under feeder-free conditions using Sendai virus vector encoding six canine reprogramming factors. Stem Cell Reports 2024; 19:141-157. [PMID: 38134923 PMCID: PMC10828825 DOI: 10.1016/j.stemcr.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Although it is in its early stages, canine induced pluripotent stem cells (ciPSCs) hold great potential for innovative translational research in regenerative medicine, developmental biology, drug screening, and disease modeling. However, almost all ciPSCs were generated from fibroblasts, and available canine cell sources for reprogramming are still limited. Furthermore, no report is available to generate ciPSCs under feeder-free conditions because of their low reprogramming efficiency. Here, we reanalyzed canine pluripotency-associated genes and designed canine LIN28A, NANOG, OCT3/4, SOX2, KLF4, and C-MYC encoding Sendai virus vector, called 159cf. and 162cf. We demonstrated that not only canine fibroblasts but also canine urine-derived cells, which can be isolated using a noninvasive and straightforward method, were successfully reprogrammed with or without feeder cells. ciPSCs existed in undifferentiated states, differentiating into the three germ layers in vitro and in vivo. We successfully generated ciPSCs under feeder-free conditions, which can promote studies in veterinary and consequently human regenerative medicines.
Collapse
Affiliation(s)
- Masaya Tsukamoto
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan; Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan; Center for Regenerative Medicine, National Center for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Kazuto Kimura
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan; Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan
| | - Takumi Yoshida
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan; Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan
| | - Miyuu Tanaka
- Department of Integrated Structural Biosciences, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan; Department of Integrated Structural Biosciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan
| | - Mitsuru Kuwamura
- Department of Integrated Structural Biosciences, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan; Department of Integrated Structural Biosciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan
| | - Taro Ayabe
- Anicom Specialty Medical Institute, Shinjuku-ku, Tokyo 231-0033, Japan
| | - Genki Ishihara
- Anicom Specialty Medical Institute, Shinjuku-ku, Tokyo 231-0033, Japan
| | - Kei Watanabe
- Anicom Specialty Medical Institute, Shinjuku-ku, Tokyo 231-0033, Japan
| | - Mika Okada
- TOKIWA-Bio, Tsukuba, Ibaraki 305-0047, Japan
| | | | | | - Hidenori Akutsu
- Center for Regenerative Medicine, National Center for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Kikuya Sugiura
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan; Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan
| | - Shingo Hatoya
- Department of Advanced Pathobiology, Graduate School of Veterinary Science, Osaka Metropolitan University, Izumisano, Osaka 598-8531, Japan; Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka 598-8531, Japan.
| |
Collapse
|
3
|
Barrachina L, Arshaghi TE, O'Brien A, Ivanovska A, Barry F. Induced pluripotent stem cells in companion animals: how can we move the field forward? Front Vet Sci 2023; 10:1176772. [PMID: 37180067 PMCID: PMC10168294 DOI: 10.3389/fvets.2023.1176772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023] Open
Abstract
Following a one medicine approach, the development of regenerative therapies for human patients leads to innovative treatments for animals, while pre-clinical studies on animals provide knowledge to advance human medicine. Among many different biological products under investigation, stem cells are among the most prominent. Mesenchymal stromal cells (MSCs) are extensively investigated, but they present challenges such as senescence and limited differentiation ability. Embryonic stem cells (ESCs) are pluripotent cells with a virtually unlimited capacity for self-renewal and differentiation, but the use of embryos carries ethical concerns. Induced pluripotent stem cells (iPSCs) can overcome all of these limitations, as they closely resemble ESCs but are derived from adult cells by reprogramming in the laboratory using pluripotency-associated transcription factors. iPSCs hold great potential for applications in therapy, disease modeling, drug screening, and even species preservation strategies. However, iPSC technology is less developed in veterinary species compared to human. This review attempts to address the specific challenges associated with generating and applying iPSCs from companion animals. Firstly, we discuss strategies for the preparation of iPSCs in veterinary species and secondly, we address the potential for different applications of iPSCs in companion animals. Our aim is to provide an overview on the state of the art of iPSCs in companion animals, focusing on equine, canine, and feline species, as well as to identify which aspects need further optimization and, where possible, to provide guidance on future advancements. Following a "step-by-step" approach, we cover the generation of iPSCs in companion animals from the selection of somatic cells and the reprogramming strategies, to the expansion and characterization of iPSCs. Subsequently, we revise the current applications of iPSCs in companion animals, identify the main hurdles, and propose future paths to move the field forward. Transferring the knowledge gained from human iPSCs can increase our understanding in the biology of pluripotent cells in animals, but it is critical to further investigate the differences among species to develop specific approaches for animal iPSCs. This is key for significantly advancing iPSC application in veterinary medicine, which at the same time will also allow gaining pre-clinical knowledge transferable to human medicine.
Collapse
Affiliation(s)
| | | | | | | | - Frank Barry
- Regenerative Medicine Institute (REMEDI), Biosciences, University of Galway, Galway, Ireland
| |
Collapse
|
4
|
Moshref M, Questa M, Lopez-Cervantes V, Sears TK, Greathouse RL, Crawford CK, Kol A. Panobinostat Effectively Increases Histone Acetylation and Alters Chromatin Accessibility Landscape in Canine Embryonic Fibroblasts but Does Not Enhance Cellular Reprogramming. Front Vet Sci 2021; 8:716570. [PMID: 34660761 PMCID: PMC8511502 DOI: 10.3389/fvets.2021.716570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/19/2021] [Indexed: 11/29/2022] Open
Abstract
Robust and reproducible protocols to efficiently reprogram adult canine cells to induced pluripotent stem cells are still elusive. Somatic cell reprogramming requires global chromatin remodeling that is finely orchestrated spatially and temporally. Histone acetylation and deacetylation are key regulators of chromatin condensation, mediated by histone acetyltransferases and histone deacetylases (HDACs), respectively. HDAC inhibitors have been used to increase histone acetylation, chromatin accessibility, and somatic cell reprogramming in human and mice cells. We hypothesized that inhibition of HDACs in canine fibroblasts would increase their reprogramming efficiency by altering the epigenomic landscape and enabling greater chromatin accessibility. We report that a combined treatment of panobinostat (LBH589) and vitamin C effectively inhibits HDAC function and increases histone acetylation in canine embryonic fibroblasts in vitro, with no significant cytotoxic effects. We further determined the effect of this treatment on global chromatin accessibility via Assay for Transposase-Accessible Chromatin using sequencing. Finally, the treatment did not induce any significant increase in cellular reprogramming efficiency. Although our data demonstrate that the unique epigenetic landscape of canine cells does not make them amenable to cellular reprogramming through the proposed treatment, it provides a rationale for a targeted, canine-specific, reprogramming approach by enhancing the expression of transcription factors such as CEBP.
Collapse
Affiliation(s)
- Maryam Moshref
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Maria Questa
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Veronica Lopez-Cervantes
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Thomas K Sears
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Rachel L Greathouse
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Charles K Crawford
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Amir Kol
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
5
|
Atkinson SP. A Preview of Selected Articles. Stem Cells 2021. [DOI: 10.1002/stem.3437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
6
|
Questa M, Moshref M, Jimenez RJ, Lopez‐Cervantes V, Crawford CK, Settles ML, Ross PJ, Kol A. Chromatin accessibility in canine stromal cells and its implications for canine somatic cell reprogramming. Stem Cells Transl Med 2020; 10:441-454. [PMID: 33210453 PMCID: PMC7900587 DOI: 10.1002/sctm.20-0278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/15/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022] Open
Abstract
Naturally occurring disease in pet dogs is an untapped and unique resource for stem cell-based regenerative medicine translational research, given the many similarities and complexity such disease shares with their human counterparts. Canine-specific regulators of somatic cell reprogramming and pluripotency maintenance are poorly understood. While retroviral delivery of the four Yamanaka factors successfully reprogrammed canine embryonic fibroblasts, adult stromal cells remained resistant to reprogramming in spite of effective viral transduction and transgene expression. We hypothesized that adult stromal cells fail to reprogram due to an epigenetic barrier. Here, we performed assay for transposase-accessible chromatin using sequencing (ATAC-seq) on canine stromal and pluripotent stem cells, analyzing 51 samples in total, and establishing the global landscape of chromatin accessibility before and after reprogramming to induced pluripotent stem cells (iPSC). We also studied adult stromal cells that do not yield iPSC colonies to identify potential reprogramming barriers. ATAC-seq analysis identified distinct cell type clustering patterns and chromatin remodeling during embryonic fibroblast reprogramming. Compared with embryonic fibroblasts, adult stromal cells had a chromatin accessibility landscape that reflects phenotypic differentiation and somatic cell-fate stability. We ultimately identified 76 candidate genes and several transcription factor binding motifs that may be impeding somatic cell reprogramming to iPSC, and could be targeted for inhibition or activation, in order to improve the process in canines. These results provide a vast resource for better understanding of pluripotency regulators in dogs and provide an unbiased rationale for novel canine-specific reprogramming approaches.
Collapse
Affiliation(s)
- Maria Questa
- Department of Pathology, Microbiology and ImmunologySchool of Veterinary Medicine, University of California DavisDavisCaliforniaUSA
| | - Maryam Moshref
- Department of Pathology, Microbiology and ImmunologySchool of Veterinary Medicine, University of California DavisDavisCaliforniaUSA
| | - Robert J. Jimenez
- Department of Pathology, Microbiology and ImmunologySchool of Veterinary Medicine, University of California DavisDavisCaliforniaUSA
| | - Veronica Lopez‐Cervantes
- Department of Pathology, Microbiology and ImmunologySchool of Veterinary Medicine, University of California DavisDavisCaliforniaUSA
| | - Charles K. Crawford
- Department of Pathology, Microbiology and ImmunologySchool of Veterinary Medicine, University of California DavisDavisCaliforniaUSA
| | - Matthew L. Settles
- Bioinformatics Core FacilityUniversity of California DavisDavisCaliforniaUSA
| | - Pablo J. Ross
- Department of Animal ScienceUniversity of California DavisDavisCaliforniaUSA
| | - Amir Kol
- Department of Pathology, Microbiology and ImmunologySchool of Veterinary Medicine, University of California DavisDavisCaliforniaUSA
| |
Collapse
|