1
|
Akat A, Karaöz E. Cell Therapy Strategies on Duchenne Muscular Dystrophy: A Systematic Review of Clinical Applications. Stem Cell Rev Rep 2024; 20:138-158. [PMID: 37955832 DOI: 10.1007/s12015-023-10653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Duchenne Muscular Dystrophy (DMD) is an inherited genetic disorder characterized by progressive degeneration of muscle tissue, leading to functional disability and premature death. Despite extensive research efforts, the discovery of a cure for DMD continues to be elusive, emphasizing the need to investigate novel treatment approaches. Cellular therapies have emerged as prospective approaches to address the underlying pathophysiology of DMD. This review provides an examination of the present situation regarding cell-based therapies, including CD133 + cells, muscle precursor cells, mesoangioblasts, bone marrow-derived mononuclear cells, mesenchymal stem cells, cardiosphere-derived cells, and dystrophin-expressing chimeric cells. A total of 12 studies were found eligible to be included as they were completed cell therapy clinical trials, clinical applications, or case reports with quantitative results. The evaluation encompassed an examination of limitations and potential advancements in this particular area of research, along with an assessment of the safety and effectiveness of cell-based therapies in the context of DMD. In general, the available data indicates that diverse cell therapy approaches may present a new, safe, and efficacious treatment modality for patients diagnosed with DMD. However, further studies are required to comprehensively understand the most advantageous treatment approach and therapeutic capacity.
Collapse
Affiliation(s)
- Ayberk Akat
- Life Park Hospital, Cellular and Biological Products Manufacturing Center, Ragıp Kenan Sok. No:8, Ortakoy, 99010, Nicosia (Lefkosa), Cyprus.
| | - Erdal Karaöz
- Liv Hospital Ulus, Regenerative Medicine and Stem Cell Center, Istanbul, Turkey
| |
Collapse
|
2
|
Devi S, Bongale AM, Tefera MA, Dixit P, Bhanap P. Fresh Umbilical Cord Blood-A Source of Multipotent Stem Cells, Collection, Banking, Cryopreservation, and Ethical Concerns. Life (Basel) 2023; 13:1794. [PMID: 37763198 PMCID: PMC10533013 DOI: 10.3390/life13091794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/02/2023] [Accepted: 05/25/2023] [Indexed: 09/29/2023] Open
Abstract
Umbilical cord blood (UCB) is a rich source of hematopoietic cells that can be used to replace bone marrow components. Many blood disorders and systemic illnesses are increasingly being treated with stem cells as regenerative medical therapy. Presently, collected blood has been stored in either public or private banks for allogenic or autologous transplantation. Using a specific keyword, we used the English language to search for relevant articles in SCOPUS and PubMed databases over time frame. According to our review, Asian countries are increasingly using UCB preservation for future use as regenerative medicine, and existing studies indicate that this trend will continue. This recent literature review explains the methodology of UCB collection, banking, and cryopreservation for future clinical use. Between 2010 and 2022, 10,054 UCB stem cell samples were effectively cryopreserved. Furthermore, we have discussed using Mesenchymal Stem Cells (MSCs) as transplant medicine, and its clinical applications. It is essential for healthcare personnel, particularly those working in labor rooms, to comprehend the protocols for collecting, transporting, and storing UCB. This review aims to provide a glimpse of the details about the UCB collection and banking processes, its benefits, and the use of UCB-derived stem cells in clinical practice, as well as the ethical concerns associated with UCB, all of which are important for healthcare professionals, particularly those working in maternity wards; namely, the obstetrician, neonatologist, and anyone involved in perinatal care. This article also highlights the practical and ethical concerns associated with private UCB banks, and the existence of public banks. UCB may continue to grow to assist healthcare teams worldwide in treating various metabolic, hematological, and immunodeficiency disorders.
Collapse
Affiliation(s)
- Seeta Devi
- Department of Obstetrics and Gynecological Nursing, Symbiosis College of Nursing, Symbiosis International (Deemed University), Lavale, Pune 412 115, Maharashtra, India;
| | - Anupkumar M. Bongale
- Department of Artificial Intelligence and Machine Learning, Symbiosis Institute of Technology, Symbiosis International (Deemed University), Lavale, Pune 412 115, Maharashtra, India
| | | | | | - Prasad Bhanap
- HoD OBG Department, Symbiosis Medical College for Women (SMCW), Symbiosis International (Deemed University), Lavale, Pune 412 115, Maharashtra, India
| |
Collapse
|
3
|
Dulak J, Pecyna M. Unproven cell interventions in Poland and the exploitation of European Union law on advanced therapy medicinal products. Stem Cell Reports 2023; 18:1610-1620. [PMID: 37390824 PMCID: PMC10444563 DOI: 10.1016/j.stemcr.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 07/02/2023] Open
Abstract
The global threat of unproven "stem cell therapies" develops despite the repeated statements of scientific organizations and regulatory agencies warning about the improper rationale, lack of effectiveness, and potential health risks of such commercial activities. Here, this problem is discussed from Poland's perspective, where unjustified "stem cell medical experiments" have raised the concern of responsible scientists and physicians. The paper describes how the European Union law on advanced therapy medicinal products and the hospital exemption rule have been used improperly and unlawfully on a mass scale. The article indicates serious scientific, medical, legal, and social issues of these activities.
Collapse
Affiliation(s)
- Józef Dulak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| | - Marlena Pecyna
- Chair of Civil Law, Faculty of Law and Administration, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
4
|
Maggi L, Quijano-Roy S, Bönnemann C, Bonne G. 253rd ENMC international workshop: Striated muscle laminopathies - natural history and clinical trial readiness. 24-26 June 2022, Hoofddorp, the Netherlands. Neuromuscul Disord 2023; 33:498-510. [PMID: 37235886 DOI: 10.1016/j.nmd.2023.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023]
Affiliation(s)
- Lorenzo Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Instituto Neurologico Carlo Besta, Milano, Italy.
| | - Susana Quijano-Roy
- APHP-Université Paris-Saclay, Neuromuscular Disorders Reference Center of Nord-Est-Île de France, FILNEMUS, ERN-Euro-NMD, Creteil, France; Pediatric Neurology and ICU Department, DMU Santé Enfant Adolescent (SEA), Raymond Poincaré University Hospital, Garches, France
| | - Carsten Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Gisèle Bonne
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France.
| |
Collapse
|
5
|
Wilton-Clark H, Yokota T. Biological and genetic therapies for the treatment of Duchenne muscular dystrophy. Expert Opin Biol Ther 2023; 23:49-59. [PMID: 36409820 DOI: 10.1080/14712598.2022.2150543] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Duchenne muscular dystrophy is a lethal genetic disease which currently has no cure, and poor standard treatment options largely focused on symptom relief. The development of multiple biological and genetic therapies is underway across various stages of clinical progress which could markedly affect how DMD patients are treated in the future. AREAS COVERED The purpose of this review is to provide an introduction to the different therapeutic modalities currently being studied, as well as a brief description of their progress to date and relative advantages and disadvantages for the treatment of DMD. This review discusses exon skipping therapy, microdystrophin therapy, stop codon readthrough therapy, CRISPR-based gene editing, cell-based therapy, and utrophin upregulation. Secondary therapies addressing nonspecific symptoms of DMD were excluded. EXPERT OPINION Despite the vast potential held by gene replacement therapy options such as microdystrophin production and utrophin upregulation, safety risks inherent to the adeno-associated virus delivery vector might hamper the clinical viability of these approaches until further improvements can be made. Of the mutation-specific therapies, exon skipping therapy remains the most extensively validated and explored option, and the cell-based CAP-1002 therapy may prove to be a suitable adjunct therapy filling the urgent need for cardiac-specific therapies.
Collapse
Affiliation(s)
- Harry Wilton-Clark
- Faculty of Medicine and Dentistry, Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Toshifumi Yokota
- Faculty of Medicine and Dentistry, Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Świątkowska-Flis B, Zdolińska-Malinowska I, Sługocka D, Boruczkowski D. The use of umbilical cord-derived mesenchymal stem cells in patients with muscular dystrophies: Results from compassionate use in real-life settings. Stem Cells Transl Med 2021; 10:1372-1383. [PMID: 34313400 PMCID: PMC8459640 DOI: 10.1002/sctm.21-0027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/10/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Muscular dystrophies are genetically determined progressive diseases with no cause‐related treatment and limited supportive treatment. Although stem cells cannot resolve the underlying genetic conditions, their wide‐ranging therapeutic properties may ameliorate the consequences of the involved mutations (oxidative stress, inflammation, mitochondrial dysfunction, necrosis). In this study, we administered advanced therapy medicinal product containing umbilical cord‐derived mesenchymal stem cells (UC‐MSCs) to 22 patients with muscular dystrophies. Patients received one to five intravenous and/or intrathecal injections per treatment course in up to two courses every 2 months. Four standard doses of 10, 20, 30, or 40 × 106 UC‐MSCs per injection were used; the approximate dose per kilogram was 1 × 106 UC‐MSCs. Muscle strength was measured with a set of CQ Dynamometer computerized force meters (CQ Elektronik System, Czernica, Poland). Statistical analysis of muscle strength in the whole group showed significant improvement in the right upper limb (+4.0 N); left hip straightening (+4.5 N) and adduction (+0.5 N); right hip straightening (+1.0 N), bending (+7.5 N), and adduction (+2.5 N); right knee straightening (+8.5 N); left shoulder revocation (+13.0 N), straightening (+5.5 N), and bending (+6.5 N); right shoulder adduction (+3.0 N), revocation (+10.5 N), and bending (+5 N); and right elbow straightening (+9.5 N); all these differences were statistically significant. In six patients (27.3%) these changes led to improvement in gait analysis or movement scale result. Only one patient experienced transient headache and lower back pain after the last administration. In conclusion, UC‐MSC therapy may be considered as a therapeutic option for these patients.
Collapse
Affiliation(s)
- Beata Świątkowska-Flis
- Polish Center of Cell Therapy and Immunotherapy in Częstochowa, CM Klara, Częstochowa, Poland.,Faculty of Health Sciences, Jan Długosz University of Humanities and Life Sciences, Częstochowa, Poland
| | | | - Dominika Sługocka
- Polish Center of Cell Therapy and Immunotherapy in Częstochowa, CM Klara, Częstochowa, Poland
| | | |
Collapse
|