1
|
Membrane affinity and fluorescent labelling: comparative study of monolayer interaction, cellular uptake and cytotoxicity profile of carboxyfluorescein-conjugated cationic peptides. Amino Acids 2018; 50:1557-1571. [PMID: 30099595 DOI: 10.1007/s00726-018-2630-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023]
Abstract
Fluorescent labelling is a common approach to reveal the molecular details of cellular uptake, internalisation, transport, distribution processes in biological systems. The conjugation with a fluorescent moiety might affect relevant physico-chemical and in vitro transport properties of the bioactive component. A representative set of seven cationic peptides-including cell-penetrating peptides as well as antimicrobial peptides and synthetic derivatives-was selected for our comparative study. Membrane affinity of the peptides and their 5(6)-carboxyfluorescein (Cf) derivatives was determined quantitatively and compared applying Langmuir monolayer of zwitterionic (DPPC) and negatively charged (DPPC + DPPG) lipids as cell membrane models. The interaction with neutral lipid layer is mainly governed by the overall hydrophobicity of the molecule which is remarkably increased by Cf-conjugation for the most hydrophobic Magainin, Melittin and Transportan. A significantly enhanced membrane affinity was detected in negatively charged lipid model monolayer for all of the peptides since the combination of electrostatic and hydrophobic interaction is active in that case. The Cf-conjugation improved the penetration ability of Penetratin and Dhvar4 suggesting that both the highly charged character (Z/n) and the increased hydrophobicity by Cf-conjugation present important contribution to membrane interaction. This effect might also responsible for the observed high in vitro internalisation rate of Penetratin and Dhvar4, while according to in vitro studies they did not cause damage of cell membrane. From the experiments with the given seven cationic peptides, it can be concluded that the Cf-conjugation alters the degree of membrane interaction of such peptides which are moderately hydrophobic and highly charged.
Collapse
|
3
|
Ábrahám Á, Baranyai Z, Gyulai G, Pári E, Horváti K, Bősze S, Kiss É. Comparative analysis of new peptide conjugates of antitubercular drug candidates—Model membrane and in vitro studies. Colloids Surf B Biointerfaces 2016; 147:106-115. [DOI: 10.1016/j.colsurfb.2016.07.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/27/2016] [Accepted: 07/28/2016] [Indexed: 01/14/2023]
|
4
|
Azad I, Ram MK, Goswami DY, Stefanakos E. Fabrication and Characterization of ZnO Langmuir-Blodgett Film and Its Use in Metal-Insulator-Metal Tunnel Diode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:8307-8314. [PMID: 27464073 DOI: 10.1021/acs.langmuir.6b02182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Metal-insulator-metal tunnel diodes have great potential for use in infrared detection and energy harvesting applications. The quantum based tunneling mechanism of electrons in MIM (metal-insulator-metal) or MIIM (metal-insulator-insulator-metal) diodes can facilitate rectification at THz frequencies. In this study, the required nanometer thin insulating layer (I) in the MIM diode structure was fabricated using the Langmuir-Blodgett technique. The zinc stearate LB film was deposited on Au/Cr coated quartz, FTO, and silicon substrates, and then heat treated by varying the temperature from 100 to 550 °C to obtain nanometer thin ZnO layers. The thin films were characterized by XRD, AFM, FTIR, and cyclic voltammetry methods. The final MIM structure was fabricated by depositing chromium/nickel over the ZnO on Au/Cr film. The current voltage (I-V) characteristics of the diode showed that the conduction mechanism is electron tunneling through the thin insulating layer. The sensitivity of the diodes was as high as 32 V(-1). The diode resistance was ∼80 Ω (at a bias voltage of 0.78 V), and the rectification ratio at that bias point was about 12 (for a voltage swing of ±200 mV). The diode response exhibited significant nonlinearity and high asymmetry at the bias point, very desirable diode performance parameters for IR detection applications.
Collapse
Affiliation(s)
- Ibrahim Azad
- Electrical Engineering Department, and ‡Clean Energy Research Center, University of South Florida , 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Manoj K Ram
- Electrical Engineering Department, and ‡Clean Energy Research Center, University of South Florida , 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - D Yogi Goswami
- Electrical Engineering Department, and ‡Clean Energy Research Center, University of South Florida , 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Elias Stefanakos
- Electrical Engineering Department, and ‡Clean Energy Research Center, University of South Florida , 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
5
|
Baer DR, Engelhard MH, Johnson GE, Laskin J, Lai J, Mueller K, Munusamy P, Thevuthasan S, Wang H, Washton N, Elder A, Baisch BL, Karakoti A, Kuchibhatla SVNT, Moon D. Surface characterization of nanomaterials and nanoparticles: Important needs and challenging opportunities. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY. A, VACUUM, SURFACES, AND FILMS : AN OFFICIAL JOURNAL OF THE AMERICAN VACUUM SOCIETY 2013; 31:50820. [PMID: 24482557 PMCID: PMC3869349 DOI: 10.1116/1.4818423] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 07/25/2013] [Indexed: 05/17/2023]
Abstract
This review examines characterization challenges inherently associated with understanding nanomaterials and the roles surface and interface characterization methods can play in meeting some of the challenges. In parts of the research community, there is growing recognition that studies and published reports on the properties and behaviors of nanomaterials often have reported inadequate or incomplete characterization. As a consequence, the true value of the data in these reports is, at best, uncertain. With the increasing importance of nanomaterials in fundamental research and technological applications, it is desirable that researchers from the wide variety of disciplines involved recognize the nature of these often unexpected challenges associated with reproducible synthesis and characterization of nanomaterials, including the difficulties of maintaining desired materials properties during handling and processing due to their dynamic nature. It is equally valuable for researchers to understand how characterization approaches (surface and otherwise) can help to minimize synthesis surprises and to determine how (and how quickly) materials and properties change in different environments. Appropriate application of traditional surface sensitive analysis methods (including x-ray photoelectron and Auger electron spectroscopies, scanning probe microscopy, and secondary ion mass spectroscopy) can provide information that helps address several of the analysis needs. In many circumstances, extensions of traditional data analysis can provide considerably more information than normally obtained from the data collected. Less common or evolving methods with surface selectivity (e.g., some variations of nuclear magnetic resonance, sum frequency generation, and low and medium energy ion scattering) can provide information about surfaces or interfaces in working environments (operando or in situ) or information not provided by more traditional methods. Although these methods may require instrumentation or expertise not generally available, they can be particularly useful in addressing specific questions, and examples of their use in nanomaterial research are presented.
Collapse
Affiliation(s)
- Donald R Baer
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | - Mark H Engelhard
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | - Grant E Johnson
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | - Julia Laskin
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | - Jinfeng Lai
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | - Karl Mueller
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | - Prabhakaran Munusamy
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | | | - Hongfei Wang
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | - Nancy Washton
- Pacific Northwest National Laboratory, EMSL, P.O. Box 999, Richland, Washington 99352
| | - Alison Elder
- Department of Environmental Medicine, University of Rochester, Rochester, New York
| | - Brittany L Baisch
- Department of Environmental Medicine, University of Rochester, Rochester, New York
| | - Ajay Karakoti
- Battelle Science and Technology India, Pune, Maharashtra, India
| | | | - Daewon Moon
- Daegu Gyeongbuk Institute of Science and Technology, Daeju, Korea
| |
Collapse
|
6
|
Nagy LN, Abrahám N, Sepsi O, Hild E, Cot D, Ayral A, Hórvölgyi Z. Complex Langmuir-Blodgett films of SiO2 and ZnO nanoparticles with advantageous optical and photocatalytical properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:12575-12580. [PMID: 18850690 DOI: 10.1021/la801766y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Multifunctional Langmuir-Blodgett (LB) films were fabricated on the surface of glass substrates using sol-gel derived ZnO and SiO2 particles. ZnO particles of 6 and 110 nm diameter were synthesized according to the methods of Meulenkamp and Seelig et al. (Meulenkamp, E. A. J. Phys. Chem. B 1998, 102, 5566; Seelig, E. W.; Tang, B.; Yamilov, A.; Cao, H.; Chang, R. P. H. Mater. Chem. Phys. 2003, 80, 257). Silica particles of 37 and 96 nm were prepared by the Stober method (Stober, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62). Alternate deposition of monoparticulate Langmuir films of SiO2 and ZnO nanoparticles provided complex (six- and nine-layered) LB films with both antireflective and photocatalytic properties. The LB films were investigated with scanning electron microscopy (morphology and structure) and UV-vis spectroscopy (optical properties and stability). The photocatalytic activity was measured by immersing the UV-irradiated films into an aqueous solution of Methyl Orange and following the photodegradation of the dye by optical spectroscopy. Adding ZnO particles to the silica films slightly lowered the antireflection property but ensured strong photocatalytic activity. Both the photocatalytic activity and antireflection properties were proved to be sensitive to the sequence of the silica and ZnO layers, with optimum properties in the case of nine-layered films with a repeated (SiO2-ZnO-ZnO) structure.
Collapse
Affiliation(s)
- Lívia Naszályi Nagy
- Department of Physical Chemistry and Materials Science, Centre for Colloid Chemistry, Budapest University of Technology and Economics, Budapest, Hungary
| | | | | | | | | | | | | |
Collapse
|
7
|
Nagy N, Deak A, Hórvölgyi Z, Fried M, Agod A, Barsony I. Ellipsometry of silica nanoparticulate Langmuir-Blodgett films for the verification of the validity of effective medium approximations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:8416-23. [PMID: 16981757 DOI: 10.1021/la061259j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The validity of various effective medium approximations (EMAs) (Bruggeman, Maxwell-Garnett) was studied for nanostructured systems, where the scale of inhomogeneities is comparable to the wavelength. Langmuir-Blodgett (LB) layers of Stöber silica nanospheres of diameters between 40 and 129 nm are excellent model structures for the experimental verification of the validity of the EMA methods in spectroscopic ellipsometry (SE) evaluation. Nanostructured mono- and multilayered silica films were investigated by SE and reflectance spectroscopy. The effective refractive index and film thickness were determined from the results of multiparameter fitting of SE spectra in the 300-759 nm wavelength region. The distribution of the effective refractive index in the particulate films was calculated assuming an ideal close-packed arrangement of particles. The average deviation from such a structure was deduced from the corrected model by introducing a "fill factor". In the EMA approximation, the spherical shape of the silica particle determines the optical behavior, rather than the "depth distribution" of silica or porosity. Therefore, the shape of particles has a dominant effect on the optical properties of nanoparticulate LB films.
Collapse
Affiliation(s)
- Norbert Nagy
- Research Institute for Technical Physics and Materials Science (MFA), P. O. Box 49, H-1525 Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|