1
|
Rezanezhad S, Azadi M. The influence of 3D-printed PLA coatings on pure and fretting fatigue properties of AM60 magnesium alloys under cyclic bending loads. Heliyon 2024; 10:e29552. [PMID: 38681535 PMCID: PMC11046121 DOI: 10.1016/j.heliyon.2024.e29552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/23/2024] [Accepted: 04/10/2024] [Indexed: 05/01/2024] Open
Abstract
A study was conducted to compare the pure fatigue and fretting fatigue properties of AM60 magnesium alloys, with and without 3D-printed PLA coatings. The PLA coating layers led to an increase in the fatigue lifetime in both pure and fretting conditions. They delayed the crack initiation time compared to uncoated samples, thereby increasing fatigue lifetime. Additionally, in the case of fretting fatigue, PLA coating caused the fretting pads to reach the magnesium alloy later, which also contributed to the longer lifetime of coated samples, compared to uncoated specimens. Using field emission scanning electron microscopy, all specimens exhibited the brittle fracture behavior, with the presence of both cleavage and quasi-cleavage marks. By the fractography, it was found that the number of cracks in coated samples decreased in both pure and fretting fatigue conditions. Remarkably, PLA coating during fretting fatigue resulted in a significant enhancement of the fretting fatigue lifetime, within 56%-2182 %.
Collapse
Affiliation(s)
- Saeid Rezanezhad
- Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
| | - Mohammad Azadi
- Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
| |
Collapse
|
2
|
|
3
|
Mohammadi H, Muhamad N, Sulong AB, Ahmadipour M. Recent advances on biofunctionalization of metallic substrate using ceramic coating: How far are we from clinically stable implant? J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Razavi M, Fathi M, Savabi O, Tayebi L, Vashaee D. Biodegradable Magnesium Bone Implants Coated with a Novel Bioceramic Nanocomposite. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1315. [PMID: 32183231 PMCID: PMC7143302 DOI: 10.3390/ma13061315] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 11/17/2022]
Abstract
Magnesium (Mg) alloys are being investigated as a biodegradable metallic biomaterial because of their mechanical property profile, which is similar to the human bone. However, implants based on Mg alloys are corroded quickly in the body before the bone fracture is fully healed. Therefore, we aimed to reduce the corrosion rate of Mg using a double protective layer. We used a magnesium-aluminum-zinc alloy (AZ91) and treated its surface with micro-arc oxidation (MAO) technique to first form an intermediate layer. Next, a bioceramic nanocomposite composed of diopside, bredigite, and fluoridated hydroxyapatite (FHA) was coated on the surface of MAO treated AZ91 using the electrophoretic deposition (EPD) technique. Our in vivo results showed a significant enhancement in the bioactivity of the nanocomposite coated AZ91 implant compared to the uncoated control implant. Implantation of the uncoated AZ91 caused a significant release of hydrogen bubbles around the implant, which was reduced when the nanocomposite coated implants were used. Using histology, this reduction in the corrosion rate of the coated implants resulted in an improved new bone formation and reduced inflammation in the interface of the implants and the surrounding tissue. Hence, our strategy using a MAO/EPD of a bioceramic nanocomposite coating (i.e., diopside-bredigite-FHA) can significantly reduce the corrosion rate and improve the bioactivity of the biodegradable AZ91 Mg implant.
Collapse
Affiliation(s)
- Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
- Department of Materials Science & Engineering, University of Central Florida, Orlando, FL 32816, USA
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
- Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Mohammadhossein Fathi
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
- Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Omid Savabi
- Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Lobat Tayebi
- Marquette University School of Dentistry, Milwaukee, WI 53233, USA;
| | - Daryoosh Vashaee
- Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606, USA
- Materials Science and Engineering Department, North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
5
|
Razavi M, Huang Y. Assessment of magnesium-based biomaterials: from bench to clinic. Biomater Sci 2019; 7:2241-2263. [DOI: 10.1039/c9bm00289h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This review presents the operation procedures of commonly used standard methods for assessment of Mg-based biomaterials from bench to clinic.
Collapse
Affiliation(s)
- Mehdi Razavi
- Brunel Center for Advanced Solidification Technology (BCAST)
- Institute of Materials and Manufacturing
- Brunel University London
- London UB8 3PH
- UK
| | - Yan Huang
- Brunel Center for Advanced Solidification Technology (BCAST)
- Institute of Materials and Manufacturing
- Brunel University London
- London UB8 3PH
- UK
| |
Collapse
|
6
|
In vivo study of microarc oxidation coated biodegradable magnesium plate to heal bone fracture defect of 3mm width. Colloids Surf B Biointerfaces 2017; 158:147-156. [PMID: 28688364 DOI: 10.1016/j.colsurfb.2017.06.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/12/2017] [Accepted: 06/21/2017] [Indexed: 11/22/2022]
Abstract
Microarc oxidation (MAO) coated magnesium (Mg) with improved corrosion resistance appeal increasing interests as a revolutionary biodegradable metal for fractured bone fixing implants application. However, the in vivo corrosion degradation of the implants and bone healing response are not well understood, which is highly required in clinic. In the present work, 10μm and 20μm thick biocompatible MAO coatings mainly composed of MgO, Mg2SiO4, CaSiO3 and Mg3(PO4)2 phases were fabricated on AZ31 magnesium alloy. The electrochemical tests indicated an improved corrosion resistance of magnesium by the MAO coatings. The 10μm and 20μm coated and uncoated magnesium plates were separately implanted into the radius bone fracture site of adult New Zealand white rabbits using a 3mm width bone fracture defect model to investigate the magnesium implants degradation and uninhibited bone healing. Taking advantage of the good biocompatibility of the MAO coatings, no adverse effects were detected through the blood test and histological examination. The implantation groups of coated and uncoated magnesium plates were both observed the promoting effect of bone fracture healing compared with the simple fracture group without implant. The releasing Mg2+ by the degradation of implants into the fracture site improved the bone fracture healing, which is attributed to the magnesium promoting CGRP-mediated osteogenic differentiation. Mg degradation and bone fracture healing promoting must be tailored by microarc oxidation coating with different thickness for potential clinic application.
Collapse
|
7
|
Heidari F, Razavi M, E.Bahrololoom M, Bazargan-Lari R, Vashaee D, Kotturi H, Tayebi L. Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 65:338-44. [DOI: 10.1016/j.msec.2016.04.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 03/10/2016] [Accepted: 04/11/2016] [Indexed: 11/25/2022]
|
8
|
Jazayeri HE, Fahmy MD, Razavi M, Stein BE, Nowman A, Masri RM, Tayebi L. Dental Applications of Natural-Origin Polymers in Hard and Soft Tissue Engineering. J Prosthodont 2016; 25:510-7. [DOI: 10.1111/jopr.12465] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2015] [Indexed: 12/11/2022] Open
Affiliation(s)
- Hossein E. Jazayeri
- University of Pennsylvania School of Dental Medicine; Philadelphia PA
- Marquette University School of Dentistry; Milwaukee WI
| | - Mina D. Fahmy
- Marquette University School of Dentistry; Milwaukee WI
| | - Mehdi Razavi
- BCAST, Institute of Materials and Manufacturing; Brunel University London; Uxbridge London UK
- Brunel Institute for Bioengineering; Brunel University London; Uxbridge London UK
| | - Brett E. Stein
- University of Pennsylvania School of Dental Medicine; Philadelphia PA
| | - Aatif Nowman
- Marquette University School of Dentistry; Milwaukee WI
| | - Radi M. Masri
- Department of Endodontics, Prosthodontics and Operative Dentistry; University of Maryland School of Dentistry; Baltimore MD
| | - Lobat Tayebi
- Marquette University School of Dentistry; Milwaukee WI
- Department of Engineering Science; University of Oxford; Oxford UK
| |
Collapse
|
9
|
Maleki-Ghaleh H, Hafezi M, Hadipour M, Nadernezhad A, Aghaie E, Behnamian Y, Abu Osman NA. Effect of Tricalcium Magnesium Silicate Coating on the Electrochemical and Biological Behavior of Ti-6Al-4V Alloys. PLoS One 2015; 10:e0138454. [PMID: 26383641 PMCID: PMC4575114 DOI: 10.1371/journal.pone.0138454] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/31/2015] [Indexed: 11/23/2022] Open
Abstract
In the current study, a sol-gel-synthesized tricalcium magnesium silicate powder was coated on Ti-6Al-4V alloys using plasma spray method. Composition of feed powder was evaluated by X-ray diffraction technique before and after the coating process. Scanning electron microscopy and atomic force microscopy were used to study the morphology of coated substrates. The corrosion behaviors of bare and coated Ti-6Al-4V alloys were examined using potentiodynamic polarization test and electrochemical impedance spectroscopy in stimulated body fluids. Moreover, bare and coated Ti-6Al-4V alloys were characterized in vitro by culturing osteoblast and mesenchymal stem cells for several days. Results demonstrated a meaningful improvement in the corrosion resistance of Ti-6Al-4V alloys coated with tricalcium magnesium silicate compared with the bare counterparts, by showing a decrease in corrosion current density from 1.84 μA/cm2 to 0.31 μA/cm2. Furthermore, the coating substantially improved the bioactivity of Ti-6Al-4Valloys. Our study on corrosion behavior and biological response of Ti-6Al-4V alloy coated by tricalcium magnesium silicate proved that the coating has considerably enhanced safety and applicability of Ti-6Al-4V alloys, suggesting its potential use in permanent implants and artificial joints.
Collapse
Affiliation(s)
| | - Masoud Hafezi
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Biomaterials Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Alborz, Iran
- * E-mail: (MH); (NAAO)
| | - Mohammadreza Hadipour
- Department of Biomaterials, Science and Research Branch, Islamic Azad University, Yazd, Iran
| | - Ali Nadernezhad
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Ermia Aghaie
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Yashar Behnamian
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Noor Azuan Abu Osman
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail: (MH); (NAAO)
| |
Collapse
|
10
|
Surface modification of biodegradable porous Mg bone scaffold using polycaprolactone/bioactive glass composite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 49:436-444. [DOI: 10.1016/j.msec.2015.01.041] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/04/2014] [Accepted: 01/06/2015] [Indexed: 01/19/2023]
|