1
|
Yoon J, Cao Z, Raju RK, Wang Y, Burnley R, Gellman AJ, Barati Farimani A, Ulissi ZW. Deep reinforcement learning for predicting kinetic pathways to surface reconstruction in a ternary alloy. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1088/2632-2153/ac191c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abstract
The majority of computational catalyst design focuses on the screening of material components and alloy composition to optimize selectivity and activity for a given reaction. However, predicting the metastability of the alloy catalyst surface at realistic operating conditions requires an extensive sampling of possible surface reconstructions and their associated kinetic pathways. We present CatGym, a deep reinforcement learning (DRL) environment for predicting the thermal surface reconstruction pathways and their associated kinetic barriers in crystalline solids under reaction conditions. The DRL agent iteratively changes the positions of atoms in the near-surface region to generate kinetic pathways to accessible local minima involving changes in the surface compositions. We showcase our agent by predicting the surface reconstruction pathways of a ternary Ni3Pd3Au2(111) alloy catalyst. Our results show that the DRL agent can not only explore more diverse surface compositions than the conventional minima hopping method, but also generate the kinetic surface reconstruction pathways. We further demonstrate that the kinetic pathway to a global minimum energy surface composition and its associated transition state predicted by our agent is in good agreement with the minimum energy path predicted by nudged elastic band calculations.
Collapse
|
2
|
Dalla Fontana A, Sirini N, Cornaglia LM, Tarditi AM. Hydrogen permeation and surface properties of PdAu and PdAgAu membranes in the presence of CO, CO2 and H2S. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
Jia H, Wu P, Zeng G, Salas-Colera E, Serrano A, Castro GR, Xu H, Sun C, Goldbach A. High-temperature stability of Pd alloy membranes containing Cu and Au. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Liu L, Wang J, He Y, Gong H. Solubility, diffusivity, and permeability of hydrogen at PdCu phases. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.07.057] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Jia H, Goldbach A, Zhao C, Castro GR, Sun C, Xu H. Permeation and in situ XRD studies on PdCuAu membranes under H2. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.01.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Conde JJ, Maroño M, Sánchez-Hervás JM. Pd-Based Membranes for Hydrogen Separation: Review of Alloying Elements and Their Influence on Membrane Properties. SEPARATION AND PURIFICATION REVIEWS 2016. [DOI: 10.1080/15422119.2016.1212379] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
|
8
|
Tarditi AM, Imhoff C, Braun F, Miller JB, Gellman AJ, Cornaglia L. PdCuAu ternary alloy membranes: Hydrogen permeation properties in the presence of H2S. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2014.12.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|