1
|
Maćkiewicz E, Rogowski J, Szynkowska-Jóźwik MI. Application of Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) in forensic science - A review. Forensic Sci Int 2024; 367:112347. [PMID: 39708708 DOI: 10.1016/j.forsciint.2024.112347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
The paper presents the possibilities of using the ToF-SIMS technique in the examination of a range of samples as forensic evidence. These include the analysis of documents, the examination of writing media, the analysis of crossing lines, the analysis of cosmetics, hair analysis, the examination of automobile paints, and the analysis of fingerprints and their contamination with exogenous substances. The advantages and disadvantages of this method were analysed with reference to the information that any forensic investigator would wish to obtain when examining highly significant evidence.
Collapse
Affiliation(s)
- Elżbieta Maćkiewicz
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland.
| | - Jacek Rogowski
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland
| | - Małgorzata Iwona Szynkowska-Jóźwik
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland
| |
Collapse
|
2
|
Richter-Bisson ZW, Nie HY, Hedberg YS. Serum protein albumin and chromium: Mechanistic insights into the interaction between ions, nanoparticles, and protein. Int J Biol Macromol 2024; 278:134845. [PMID: 39159799 DOI: 10.1016/j.ijbiomac.2024.134845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
The interaction of human proteins and metal species, both ions and nanoparticles, is poorly understood despite their growing importance. These materials are the by-products of corrosion processes and are of relevance for food and drug manufacturing, nanomedicine, and biomedical implant corrosion. Here, we study the interaction of Cr(III) ions and chromium oxide nanoparticles with bovine serum albumin in physiological conditions. This study combined electrophoretic mobility measurements, spectroscopy, and time-of-flight secondary ion mass spectrometry with principal component analysis. It was determined that neither metal species resulted in global albumin unfolding. The Cr(III) ions interacted strongly with amino acids found in previously discovered metal binding sites, but also were most strongly implicated in the interaction with negatively charged acid residues, suggesting an electrostatic interaction. Bovine serum albumin (BSA) was found to bind to the Cr2O3 nanoparticles in a preferential orientation, due to electrostatic interactions between the positive amino acid residues and the negative chromium oxide nanoparticle surface. These findings ameliorate our understanding of the interaction between trivalent chromium ions and nanoparticles, and biological macromolecules.
Collapse
Affiliation(s)
| | - Heng-Yong Nie
- Surface Science Western, Western University, London, ON N6G 0J3, Canada; Department of Physics and Astronomy, Western University, London, ON N6A 3K7, Canada
| | - Yolanda Susanne Hedberg
- Department of Chemistry, Western University, London, ON N6A 5B7, Canada; Surface Science Western, Western University, London, ON N6G 0J3, Canada; Lawson Health Research Institute, London, ON N6C 2R5, Canada.
| |
Collapse
|
3
|
Bailey MJ, de Puit M, Romolo FS. Surface Analysis Techniques in Forensic Science: Successes, Challenges, and Opportunities for Operational Deployment. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:173-196. [PMID: 35167323 DOI: 10.1146/annurev-anchem-061020-124221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface analysis techniques have rapidly evolved in the last decade. Some of these are already routinely used in forensics, such as for the detection of gunshot residue or for glass analysis. Some surface analysis approaches are attractive for their portability to the crime scene. Others can be very helpful in forensic laboratories owing to their high spatial resolution, analyte coverage, speed, and specificity. Despite this, many proposed applications of the techniques have not yet led to operational deployment. Here, we explore the application of these techniques to the most important traces commonly found in forensic casework. We highlight where there is potential to add value and outline the progress that is needed to achieve operational deployment. We consider within the scope of this review surface mass spectrometry, surface spectroscopy, and surface X-ray spectrometry. We show how these tools show great promise for the analysis of fingerprints, hair, drugs, explosives, and microtraces.
Collapse
Affiliation(s)
- Melanie J Bailey
- Department of Chemistry, Stag Hill Campus, University of Surrey, Guildford, United Kingdom;
| | - Marcel de Puit
- Netherlands Forensic Institute, The Hague, The Netherlands
- Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
4
|
Duarte JM, Sales NGS, Braga JWB, Bridge C, Maric M, Sousa MH, Gomes JDA. Discrimination of white automotive paint samples using ATR-FTIR and PLS-DA for forensic purposes. Talanta 2021; 240:123154. [PMID: 34972063 DOI: 10.1016/j.talanta.2021.123154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
The consequences of a hit-and-run car crash are significant and may include serious injuries to the victims, health system overload and even victim's death. The vehicle and driver identification are often challenging for local law enforcement. The aim of this study was to develop a methodology to discriminate between automotive paint samples according to the make of the vehicle and its color shade. 143 white samples (collected at traffic accident scenes) were analyzed in situ by Fourier transform infrared spectroscopy with attenuated total reflectance (ATR-FTIR) and coupled microscopy. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed for data analysis. The samples were split into three groups: calibration set, validation set and external test set. The figures of merit were calculated to assess the quality of the model. Sensitivity, specificity, and efficiency rates were, respectively, 98,9%, 98.4% and 98.6%, for the calibration set. For the validation group, the classification accuracy was 100%. Correct classification rates for the internal validation set and external test set were 100% and 79.1% respectively. The technique is clean, fast, relatively low-cost, and non-destructive. Damaged regions of the samples were avoided by using the attached microscope. Limiting the age of the samples to a maximum of 10 years was enough to avoid misclassifications due to the natural degradation and weathering of the sample. Since the external test group is formed by underrepresented classes, its correct classification rate (79.1%) can be potentially improved at any time, by including and analyzing more samples.
Collapse
Affiliation(s)
- Juliana Melo Duarte
- Forensic Institute, Civil Police of the Brazilian Federal District (PCDF), Brasilia (DF), Brazil; Health Sciences and Technologies, Faculty of Ceilandia, University of Brasilia (UnB), Brasilia, DF, Brazil
| | | | | | - Candice Bridge
- National Center for Forensic Science, University of Central Florida, Orlando, FL, USA; Department of Chemistry, University of Central Florida, Orlando, FL, USA
| | - Mark Maric
- National Center for Forensic Science, University of Central Florida, Orlando, FL, USA
| | - Marcelo Henrique Sousa
- Health Sciences and Technologies, Faculty of Ceilandia, University of Brasilia (UnB), Brasilia, DF, Brazil
| | - Juliano de Andrade Gomes
- Forensic Institute, Civil Police of the Brazilian Federal District (PCDF), Brasilia (DF), Brazil.
| |
Collapse
|
5
|
Sauzier G, van Bronswijk W, Lewis SW. Chemometrics in forensic science: approaches and applications. Analyst 2021; 146:2415-2448. [PMID: 33729240 DOI: 10.1039/d1an00082a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Forensic investigations are often reliant on physical evidence to reconstruct events surrounding a crime. However, there remains a need for more objective approaches to evidential interpretation, along with rigorously validated procedures for handling, storage and analysis. Chemometrics has been recognised as a powerful tool within forensic science for interpretation and optimisation of analytical procedures. However, careful consideration must be given to factors such as sampling, validation and underpinning study design. This tutorial review aims to provide an accessible overview of chemometric methods within the context of forensic science. The review begins with an overview of selected chemometric techniques, followed by a broad review of studies demonstrating the utility of chemometrics across various forensic disciplines. The tutorial review ends with the discussion of the challenges and emerging trends in this rapidly growing field.
Collapse
Affiliation(s)
- Georgina Sauzier
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia.
| | - Wilhelm van Bronswijk
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia.
| | - Simon W Lewis
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia.
| |
Collapse
|
6
|
Duarte JM, Sales NGS, Sousa MH, Bridge C, Maric M, Gomes JDA. Automotive paint analysis: How far has science advanced in the last ten years? Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|