1
|
Gupta NK, Schultz T, Karuppannan SK, Vilan A, Koch N, Nijhuis CA. The energy level alignment of the ferrocene-EGaIn interface studied with photoelectron spectroscopy. Phys Chem Chem Phys 2021; 23:13458-13467. [PMID: 34095913 DOI: 10.1039/d1cp01690c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The energy level alignment after the formation of a molecular tunnel junction is often poorly understood because spectroscopy inside junctions is not possible, which hampers the rational design of functional molecular junctions and complicates the interpretation of the data generated by molecular junctions. In molecular junction platforms where the top electrode-molecule interaction is weak; one may argue that the energy level alignment can be deduced from measurements with the molecules supported by the bottom electrode (sometimes referred to as "half junctions"). This approach, however, still relies on a series of assumptions, which are challenging to address experimentally due to difficulties in studying the molecule-top electrode interaction. Herein, we describe top electrode-molecule junctions with a liquid metal alloy top electrode of EGaIn (which stands for eutectic alloy of Ga and In) interacting with well-characterised ferrocene (Fc) moieties. We deposited a ferrocene derivative on films of EGaIn, coated with its native GaOx layer, and studied the energy level alignment with photoelectron spectroscopy. Our results reveal that the electronic interaction between the Fc and GaOx/EGaIn is very weak, resembling physisorption. Therefore, investigations of "half junctions" for this system can provide valuable information regarding the energy level alignment of complete EGaIn junctions. Our results help to improve our understanding of the energy landscape in weakly coupled molecular junctions and aid to the rational design of molecular electronic devices.
Collapse
Affiliation(s)
- Nipun Kumar Gupta
- Departement of Chemistry, Faculty of Science, National University of Singapore, Singapore, Singapore and Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Thorsten Schultz
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany. and Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Senthil Kumar Karuppannan
- Departement of Chemistry, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Ayelet Vilan
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Norbert Koch
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany. and Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Christian A Nijhuis
- Departement of Chemistry, Faculty of Science, National University of Singapore, Singapore, Singapore and Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore and Department of Molecules and Materials, MESA+ Institute for Nanotechnology and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
2
|
Kuhrt R, Ho PY, Hantusch M, Lissel F, Blacque O, Knupfer M, Büchner B. Synthesis and charge transfer characteristics of a ruthenium–acetylide complex. RSC Adv 2020; 10:43242-43247. [PMID: 35514917 PMCID: PMC9058256 DOI: 10.1039/d0ra08390a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/18/2020] [Indexed: 12/25/2022] Open
Abstract
A novel ruthenium–acetylide complex was synthesised and characterised in solid state and solution. Thin films of the complex were evaporated on silver and gold foils in ultra high vacuum in order to probe the electronic properties with photoemission spectroscopy. The charge transfer characteristics of the complex with the strong acceptor F6TCNNQ were investigated by UV-vis absorption in solution as well as at an interface with photoemission spectroscopy. A new excitation in the former optical gap of the pristine materials was probed in solution. Moreover, it was possible to identify the oxidised complex as well as the reduced acceptor by X-ray photoemission spectroscopy. In particular, our data reveal that oxidation of the complex mainly occurs at the Ru centre. The charge transfer can be characterised as localised and mainly ionic although signs of a reaction of the acceptors aminogroups with the ruthenium–acetylide complex were found. A newly synthesised ruthenium–acetylide complex is characterised by various methods and its charge transfer to the acceptor F6TCNNQ is studied by optical and photoelectron spectroscopy.![]()
Collapse
Affiliation(s)
- Robert Kuhrt
- Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden
- 01069 Dresden
- Germany
| | - Po-Yuen Ho
- Leibniz-Institut für Polymerforschung Dresden
- 01069 Dresden
- Germany
| | - Martin Hantusch
- Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden
- 01069 Dresden
- Germany
| | - Franziska Lissel
- Leibniz-Institut für Polymerforschung Dresden
- 01069 Dresden
- Germany
| | - Olivier Blacque
- Department of Chemistry
- University of Zurich
- 8057 Zürich
- Switzerland
| | - Martin Knupfer
- Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden
- 01069 Dresden
- Germany
| | - Bernd Büchner
- Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden
- 01069 Dresden
- Germany
| |
Collapse
|