Shaddick G, Lee D, Wakefield J. Incorporating spatial variability within epidemiological studies of environmental exposures.
ACTA ACUST UNITED AC 2013;
22:65-74. [PMID:
25253999 DOI:
10.1016/j.jag.2012.03.011]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Recently there has been great interest in modelling the association between aggregate disease counts and environmental exposures measured at point locations, for example via air pollution monitors. In such cases, the standard approach is to average the observed measurements from the individual monitors and use this in a log-linear health model. Hence such studies are ecological in nature being based on spatially aggregated health and exposure data. Here we investigate the potential for biases in the estimates of the effects on health in such settings. Such ecological bias may occur if a simple summary measure, such as a daily mean, is not a suitable summary of a spatially variable pollution surface. We assess the performance of commonly used models when confronted with such issues using simulation studies and compare their performance with a model specifically designed to acknowledge the effects of exposure aggregation. In addition to simulation studies, we apply the models to a case study of the short-term effects of particulate matter on respiratory mortality using data from Greater London for the period 2002-2005.
Collapse