1
|
Hanscom BS, Donnell DJ, Fleming TR, Hughes JP, McCauley M, Grinsztejn B, Landovitz RJ, Emerson SS. Evaluating group-sequential non-inferiority clinical trials following interim stopping: The HIV Prevention Trials Network 083 trial. Clin Trials 2022; 19:605-612. [PMID: 36053045 PMCID: PMC9691580 DOI: 10.1177/17407745221118371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND/AIMS The HIV Prevention Trials Network 083 trial was a group-sequential non-inferiority trial designed to compare HIV incidence under a novel experimental regimen for HIV prevention, long-acting injectable cabotegravir, with an active-control regimen of daily oral tenofovir disoproxil fumarate/emtricitabine (brand name Truvada). In March of 2020, just as the trial had completed enrollment, the COVID-19 pandemic threatened to prevent trial participants from attending study visits and obtaining study medication, motivating the study team to update the interim monitoring plan. The Data and Safety Monitoring Board subsequently stopped the trial at the first interim review due to strong early evidence of efficacy. METHODS Here we describe some unique aspects of the trial's design, monitoring, analysis, and interpretation. We illustrate the importance of computing point estimates, confidence intervals, and p values based on the sampling distribution induced by sequential monitoring. RESULTS Accurate analysis, decision-making and interpretation of trial results rely on pre-specification of a stopping boundary, including the scale on which the stopping rule will be implemented, the specific test statistics to be calculated, and how the boundary will be adjusted if the available information fraction at interim review is different from planned. After appropriate adjustment for the sampling distribution and overrun, the HIV Prevention Trials Network 083 trial provided strong evidence that the experimental regimen was superior to the active control. CONCLUSIONS For the HIV Prevention Trials Network 083 trial, the difference between corrected inferential statistics and naive results was quite small-as will often be the case-nevertheless, it is appropriate to report and publish the most accurate and unbiased statistical results.
Collapse
Affiliation(s)
- Brett S Hanscom
- Statistical Center for HIV Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Deborah J Donnell
- Statistical Center for HIV Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Thomas R Fleming
- University of Washington Department of Biostatistics, Hans Rosling Center for Population Health, Seattle, WA, USA
| | - James P Hughes
- Statistical Center for HIV Research and Prevention, Fred Hutchinson Cancer Research Center, Seattle, WA, USA,University of Washington Department of Biostatistics, Hans Rosling Center for Population Health, Seattle, WA, USA
| | | | - Beatriz Grinsztejn
- Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Scott S Emerson
- University of Washington Department of Biostatistics, Hans Rosling Center for Population Health, Seattle, WA, USA
| |
Collapse
|
2
|
Wason JMS, Dimairo M, Biggs K, Bowden S, Brown J, Flight L, Hall J, Jaki T, Lowe R, Pallmann P, Pilling MA, Snowdon C, Sydes MR, Villar SS, Weir CJ, Wilson N, Yap C, Hancock H, Maier R. Practical guidance for planning resources required to support publicly-funded adaptive clinical trials. BMC Med 2022; 20:254. [PMID: 35945610 PMCID: PMC9364623 DOI: 10.1186/s12916-022-02445-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/20/2022] [Indexed: 11/15/2022] Open
Abstract
Adaptive designs are a class of methods for improving efficiency and patient benefit of clinical trials. Although their use has increased in recent years, research suggests they are not used in many situations where they have potential to bring benefit. One barrier to their more widespread use is a lack of understanding about how the choice to use an adaptive design, rather than a traditional design, affects resources (staff and non-staff) required to set-up, conduct and report a trial. The Costing Adaptive Trials project investigated this issue using quantitative and qualitative research amongst UK Clinical Trials Units. Here, we present guidance that is informed by our research, on considering the appropriate resourcing of adaptive trials. We outline a five-step process to estimate the resources required and provide an accompanying costing tool. The process involves understanding the tasks required to undertake a trial, and how the adaptive design affects them. We identify barriers in the publicly funded landscape and provide recommendations to trial funders that would address them. Although our guidance and recommendations are most relevant to UK non-commercial trials, many aspects are relevant more widely.
Collapse
Affiliation(s)
- James M S Wason
- Biostatistics Research Group, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| | - Munyaradzi Dimairo
- School of Health and Related Research, Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Katie Biggs
- School of Health and Related Research, Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Sarah Bowden
- Cancer Research UK Clinical Trials Unit (CRCTU), University of Birmingham, Birmingham, UK
| | - Julia Brown
- Cancer Research UK CTU, University of Leeds, Leeds, UK
| | - Laura Flight
- School of Health and Related Research, Health Economics and Decision Science, University of Sheffield, Sheffield, UK
| | - Jamie Hall
- School of Health and Related Research, Clinical Trials Research Unit, University of Sheffield, Sheffield, UK
| | - Thomas Jaki
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- Department of Mathematics and Statistics, Lancaster University, Lancaster, UK
| | - Rachel Lowe
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | | | - Mark A Pilling
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Claire Snowdon
- The Institute of Cancer Research Clinical Trials & Statistics Unit, London, UK
| | | | - Sofía S Villar
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Christopher J Weir
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Nina Wilson
- Biostatistics Research Group, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Christina Yap
- The Institute of Cancer Research Clinical Trials & Statistics Unit, London, UK
| | - Helen Hancock
- Newcastle Clinical Trials Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Rebecca Maier
- Newcastle Clinical Trials Unit, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
3
|
Janiaud P, Serghiou S, Ioannidis JP. New clinical trial designs in the era of precision medicine: An overview of definitions, strengths, weaknesses, and current use in oncology. Cancer Treat Rev 2019; 73:20-30. [DOI: 10.1016/j.ctrv.2018.12.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/14/2022]
|
4
|
Abstract
OBJECTIVES This review investigates characteristics of implemented adaptive design clinical trials and provides examples of regulatory experience with such trials. DESIGN Review of adaptive design clinical trials in EMBASE, PubMed, Cochrane Registry of Controlled Clinical Trials, Web of Science and ClinicalTrials.gov. Phase I and seamless Phase I/II trials were excluded. Variables extracted from trials included basic study characteristics, adaptive design features, size and use of independent data monitoring committees (DMCs) and blinded interim analyses. We also examined use of the adaptive trials in new drug submissions to the Food and Drug Administration (FDA) and European Medicines Agency (EMA) and recorded regulators' experiences with adaptive designs. RESULTS 142 studies met inclusion criteria. There has been a recent growth in publicly reported use of adaptive designs among researchers around the world. The most frequently appearing types of adaptations were seamless Phase II/III (57%), group sequential (21%), biomarker adaptive (20%), and adaptive dose-finding designs (16%). About one-third (32%) of trials reported an independent DMC, while 6% reported blinded interim analysis. We found that 9% of adaptive trials were used for FDA product approval consideration, and 12% were used for EMA product approval consideration. International regulators had mixed experiences with adaptive trials. Many product applications with adaptive trials had extensive correspondence between drug sponsors and regulators regarding the adaptive designs, in some cases with regulators requiring revisions or alterations to research designs. CONCLUSIONS Wider use of adaptive designs will necessitate new drug application sponsors to engage with regulatory scientists during planning and conduct of the trials. Investigators need to more consistently report protections intended to preserve confidentiality and minimise potential operational bias during interim analysis.
Collapse
Affiliation(s)
- Laura E Bothwell
- Program on Regulation, Therapeutics, and Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jerry Avorn
- Program on Regulation, Therapeutics, and Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Nazleen F Khan
- Program on Regulation, Therapeutics, and Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Aaron S Kesselheim
- Program on Regulation, Therapeutics, and Law (PORTAL), Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Antoniou M, Jorgensen AL, Kolamunnage-Dona R. Biomarker-Guided Adaptive Trial Designs in Phase II and Phase III: A Methodological Review. PLoS One 2016; 11:e0149803. [PMID: 26910238 PMCID: PMC4766245 DOI: 10.1371/journal.pone.0149803] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/04/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Personalized medicine is a growing area of research which aims to tailor the treatment given to a patient according to one or more personal characteristics. These characteristics can be demographic such as age or gender, or biological such as a genetic or other biomarker. Prior to utilizing a patient's biomarker information in clinical practice, robust testing in terms of analytical validity, clinical validity and clinical utility is necessary. A number of clinical trial designs have been proposed for testing a biomarker's clinical utility, including Phase II and Phase III clinical trials which aim to test the effectiveness of a biomarker-guided approach to treatment; these designs can be broadly classified into adaptive and non-adaptive. While adaptive designs allow planned modifications based on accumulating information during a trial, non-adaptive designs are typically simpler but less flexible. METHODS AND FINDINGS We have undertaken a comprehensive review of biomarker-guided adaptive trial designs proposed in the past decade. We have identified eight distinct biomarker-guided adaptive designs and nine variations from 107 studies. Substantial variability has been observed in terms of how trial designs are described and particularly in the terminology used by different authors. We have graphically displayed the current biomarker-guided adaptive trial designs and summarised the characteristics of each design. CONCLUSIONS Our in-depth overview provides future researchers with clarity in definition, methodology and terminology for biomarker-guided adaptive trial designs.
Collapse
Affiliation(s)
- Miranta Antoniou
- MRC North West Hub For Trials Methodology Research, Liverpool, United Kingdom
- Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, L69 3GL, Liverpool, United Kingdom
- * E-mail:
| | - Andrea L Jorgensen
- MRC North West Hub For Trials Methodology Research, Liverpool, United Kingdom
- Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, L69 3GL, Liverpool, United Kingdom
| | - Ruwanthi Kolamunnage-Dona
- MRC North West Hub For Trials Methodology Research, Liverpool, United Kingdom
- Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, L69 3GL, Liverpool, United Kingdom
| |
Collapse
|
6
|
Majid A, Bae ON, Redgrave J, Teare D, Ali A, Zemke D. The Potential of Adaptive Design in Animal Studies. Int J Mol Sci 2015; 16:24048-58. [PMID: 26473839 PMCID: PMC4632737 DOI: 10.3390/ijms161024048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/23/2015] [Accepted: 09/27/2015] [Indexed: 11/30/2022] Open
Abstract
Clinical trials are the backbone of medical research, and are often the last step in the development of new therapies for use in patients. Prior to human testing, however, preclinical studies using animal subjects are usually performed in order to provide initial data on the safety and effectiveness of prospective treatments. These studies can be costly and time consuming, and may also raise concerns about the ethical treatment of animals when potentially harmful procedures are involved. Adaptive design is a process by which the methods used in a study may be altered while it is being conducted in response to preliminary data or other new information. Adaptive design has been shown to be useful in reducing the time and costs associated with clinical trials, and may provide similar benefits in preclinical animal studies. The purpose of this review is to summarize various aspects of adaptive design and evaluate its potential for use in preclinical research.
Collapse
Affiliation(s)
- Arshad Majid
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Ok-Nam Bae
- College of Pharmacy Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791, Korea.
| | - Jessica Redgrave
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Dawn Teare
- School of Health and Related Research, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Ali Ali
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| | - Daniel Zemke
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.
| |
Collapse
|
7
|
Levin GP, Emerson SC, Emerson SS. An evaluation of inferential procedures for adaptive clinical trial designs with pre-specified rules for modifying the sample size. Biometrics 2014; 70:556-67. [DOI: 10.1111/biom.12168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 02/01/2014] [Accepted: 03/01/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Gregory P. Levin
- Department of Biostatistics; University of Washington; Seattle, Washington 98195 U.S.A
| | - Sarah C. Emerson
- Department of Statistics; Oregon State University; Corvallis, Oregon 97331 U.S.A
| | - Scott S. Emerson
- Department of Biostatistics; University of Washington; Seattle, Washington 98195 U.S.A
| |
Collapse
|
8
|
Levin GP, Emerson SC, Emerson SS. Authors' response to ‘Adaptive clinical trial designs with pre-specified rules for modifying the sample size: a different perspective’. Stat Med 2013. [DOI: 10.1002/sim.5749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
9
|
Levin GP, Emerson SC, Emerson SS. Adaptive clinical trial designs with pre-specified rules for modifying the sample size: understanding efficient types of adaptation. Stat Med 2012; 32:1259-75; discussion 1280-2. [PMID: 23081665 DOI: 10.1002/sim.5662] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 10/01/2012] [Indexed: 11/06/2022]
Abstract
Adaptive clinical trial design has been proposed as a promising new approach that may improve the drug discovery process. Proponents of adaptive sample size re-estimation promote its ability to avoid 'up-front' commitment of resources, better address the complicated decisions faced by data monitoring committees, and minimize accrual to studies having delayed ascertainment of outcomes. We investigate aspects of adaptation rules, such as timing of the adaptation analysis and magnitude of sample size adjustment, that lead to greater or lesser statistical efficiency. Owing in part to the recent Food and Drug Administration guidance that promotes the use of pre-specified sampling plans, we evaluate alternative approaches in the context of well-defined, pre-specified adaptation. We quantify the relative costs and benefits of fixed sample, group sequential, and pre-specified adaptive designs with respect to standard operating characteristics such as type I error, maximal sample size, power, and expected sample size under a range of alternatives. Our results build on others' prior research by demonstrating in realistic settings that simple and easily implemented pre-specified adaptive designs provide only very small efficiency gains over group sequential designs with the same number of analyses. In addition, we describe optimal rules for modifying the sample size, providing efficient adaptation boundaries on a variety of scales for the interim test statistic for adaptation analyses occurring at several different stages of the trial. We thus provide insight into what are good and bad choices of adaptive sampling plans when the added flexibility of adaptive designs is desired.
Collapse
Affiliation(s)
- Gregory P Levin
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA.
| | | | | |
Collapse
|
10
|
Molitoris BA, Okusa MD, Palevsky PM, Chawla LS, Kaufman JS, Devarajan P, Toto RM, Hsu CY, Greene TH, Faubel SG, Kellum JA, Wald R, Chertow GM, Levin A, Waikar SS, Murray PT, Parikh CR, Shaw AD, Go AS, Chinchilli VM, Liu KD, Cheung AK, Weisbord SD, Mehta RL, Stokes JB, Thompson AM, Thompson BT, Westenfelder CS, Tumlin JA, Warnock DG, Shah SV, Xie Y, Duggan EG, Kimmel PL, Star RA. Design of clinical trials in AKI: a report from an NIDDK workshop. Trials of patients with sepsis and in selected hospital settings. Clin J Am Soc Nephrol 2012; 7:856-60. [PMID: 22442184 DOI: 10.2215/cjn.12821211] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
AKI remains an important clinical problem, with a high mortality rate, increasing incidence, and no Food and Drug Administration-approved therapeutics. Advances in addressing this clinical need require approaches for rapid diagnosis and stratification of injury, development of therapeutic agents based on precise understanding of key pathophysiological events, and implementation of well designed clinical trials. In the near future, AKI biomarkers may facilitate trial design. To address these issues, the National Institute of Diabetes and Digestive and Kidney Diseases sponsored a meeting, "Clinical Trials in Acute Kidney Injury: Current Opportunities and Barriers," in December of 2010 that brought together academic investigators, industry partners, and representatives from the National Institutes of Health and the Food and Drug Administration. Important issues in the design of clinical trials for interventions in AKI in patients with sepsis or AKI in the setting of critical illness after surgery or trauma were discussed. The sepsis working group discussed use of severity of illness scores and focus on patients with specific etiologies to enhance homogeneity of trial participants. The group also discussed endpoints congruent with those endpoints used in critical care studies. The second workgroup emphasized difficulties in obtaining consent before admission and collaboration among interdisciplinary healthcare groups. Despite the difficult trial design issues, these clinical situations represent a clinical opportunity because of the high event rates, severity of AKI, and poor outcomes. The groups considered trial design issues and discussed advantages and disadvantages of several short- and long-term primary endpoints in these patients.
Collapse
|
11
|
Okusa MD, Molitoris BA, Palevsky PM, Chinchilli VM, Liu KD, Cheung AK, Weisbord SD, Faubel S, Kellum JA, Wald R, Chertow GM, Levin A, Waikar SS, Murray PT, Parikh CR, Shaw AD, Go AS, Chawla LS, Kaufman JS, Devarajan P, Toto RM, Hsu CY, Greene TH, Mehta RL, Stokes JB, Thompson AM, Thompson BT, Westenfelder CS, Tumlin JA, Warnock DG, Shah SV, Xie Y, Duggan EG, Kimmel PL, Star RA. Design of clinical trials in acute kidney injury: a report from an NIDDK workshop--prevention trials. Clin J Am Soc Nephrol 2012; 7:851-5. [PMID: 22442188 DOI: 10.2215/cjn.12811211] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AKI is an important clinical problem that has become increasingly more common. Mortality rates associated with AKI remain high despite advances in supportive care. Patients surviving AKI have increased long-term mortality and appear to be at increased risk of developing CKD and progressing to ESRD. No proven effective pharmacologic therapies are currently available for the prevention or treatment of AKI. Advances in addressing this unmet need will require the development of novel therapeutic agents based on precise understanding of key pathophysiological events and the implementation of well designed clinical trials. To address this need, the National Institute of Diabetes and Digestive and Kidney Diseases sponsored the "Clinical Trials in Acute Kidney Injury: Current Opportunities and Barriers" workshop in December 2010. The event brought together representatives from academia, industry, the National Institutes of Health, and the US Food and Drug Administration. We report the discussions of workgroups that developed outlines of clinical trials for the prevention of AKI in two patient populations: patients undergoing elective surgery who are at risk for or who develop AKI, and patients who are at risk for contrast-induced AKI. In both of these populations, primary prevention or secondary therapy can be delivered at an optimal time relative to kidney injury. The workgroups detailed primary and secondary endpoints for studies in these groups, and explored the use of adaptive clinical trial designs for trials of novel preventive strategies to improve outcomes of patients with AKI.
Collapse
Affiliation(s)
- Mark D Okusa
- Division of Nephrology, University of Virginia Health System, Charlottesville, VA 22908-0133, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Palevsky PM, Molitoris BA, Okusa MD, Levin A, Waikar SS, Wald R, Chertow GM, Murray PT, Parikh CR, Shaw AD, Go AS, Faubel SG, Kellum JA, Chinchilli VM, Liu KD, Cheung AK, Weisbord SD, Chawla LS, Kaufman JS, Devarajan P, Toto RM, Hsu CY, Greene T, Mehta RL, Stokes JB, Thompson AM, Thompson BT, Westenfelder CS, Tumlin JA, Warnock DG, Shah SV, Xie Y, Duggan EG, Kimmel PL, Star RA. Design of clinical trials in acute kidney injury: report from an NIDDK workshop on trial methodology. Clin J Am Soc Nephrol 2012; 7:844-50. [PMID: 22442182 DOI: 10.2215/cjn.12791211] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Acute kidney injury (AKI) remains a complex clinical problem associated with significant short-term morbidity and mortality and lacking effective pharmacologic interventions. Patients with AKI experience longer-term risks for progressive chronic ESRD, which diminish patients' health-related quality of life and create a larger burden on the healthcare system. Although experimental models have yielded numerous promising agents, translation into clinical practice has been unsuccessful, possibly because of issues in clinical trial design, such as delayed drug administration, masking of therapeutic benefit by adverse events, and inadequate sample size. To address issues of clinical trial design, the National Institute of Diabetes and Digestive and Kidney Diseases sponsored a workshop titled "Clinical Trials in Acute Kidney Injury: Current Opportunities and Barriers" in December 2010. Workshop participants included representatives from academia, industry, and government agencies whose areas of expertise spanned basic science, clinical nephrology, critical care medicine, biostatistics, pharmacology, and drug development. This document summarizes the discussions of collaborative workgroups that addressed issues related to patient selection, study endpoints, the role of novel biomarkers, sample size and power calculations, and adverse events and pilot/feasibility studies in prevention and treatment of AKI. Companion articles outline the discussions of workgroups for model trials related to prevention or treatment of established AKI in different clinical settings, such as in patients with sepsis.
Collapse
Affiliation(s)
- Paul M Palevsky
- Renal Section, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Emerson SS, Levin GP, Emerson SC. Comments on ‘Adaptive increase in sample size when interim results are promising: A practical guide with examples’. Stat Med 2011; 30:3285-301; discussion 3302-3. [DOI: 10.1002/sim.4271] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|