• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4640456)   Today's Articles (251)   Subscriber (50392)
For: Huang Y, Chen J. Bayesian quantile regression-based nonlinear mixed-effects joint models for time-to-event and longitudinal data with multiple features. Stat Med 2016;35:5666-5685. [PMID: 27592848 DOI: 10.1002/sim.7092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/06/2016] [Accepted: 08/12/2016] [Indexed: 11/08/2022]
Number Cited by Other Article(s)
1
Chen J, Huang Y, Wang Q. Semiparametric multivariate joint model for skewed-longitudinal and survival data: A Bayesian approach. Stat Med 2023;42:4972-4989. [PMID: 37668072 DOI: 10.1002/sim.9896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/03/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
2
Gong M, Mao Z, Zhang D, Ren J, Zuo S. Study on Bayesian Skew-Normal Linear Mixed Model and Its Application in Fire Insurance. FIRE TECHNOLOGY 2023:1-26. [PMID: 37360677 PMCID: PMC10245366 DOI: 10.1007/s10694-023-01436-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 05/20/2023] [Indexed: 06/28/2023]
3
Huang Y, Chen J, Xu L, Tang NS. Bayesian Joint Modeling of Multivariate Longitudinal and Survival Data With an Application to Diabetes Study. Front Big Data 2022;5:812725. [PMID: 35574573 PMCID: PMC9094046 DOI: 10.3389/fdata.2022.812725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 03/24/2022] [Indexed: 11/15/2022]  Open
4
Kerioui M, Bertrand J, Bruno R, Mercier F, Guedj J, Desmée S. Modelling the association between biomarkers and clinical outcome: an introduction to nonlinear joint models. Br J Clin Pharmacol 2022;88:1452-1463. [PMID: 34993985 DOI: 10.1111/bcp.15200] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 10/12/2021] [Accepted: 11/07/2021] [Indexed: 11/30/2022]  Open
5
Zhang H, Huang Y. Bayesian joint modeling for partially linear mixed-effects quantile regression of longitudinal and time-to-event data with limit of detection, covariate measurement errors and skewness. J Biopharm Stat 2020;31:295-316. [PMID: 33284096 DOI: 10.1080/10543406.2020.1852248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
6
Alsefri M, Sudell M, García-Fiñana M, Kolamunnage-Dona R. Bayesian joint modelling of longitudinal and time to event data: a methodological review. BMC Med Res Methodol 2020;20:94. [PMID: 32336264 PMCID: PMC7183597 DOI: 10.1186/s12874-020-00976-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/12/2020] [Indexed: 02/07/2023]  Open
7
Zhang H, Huang Y. Quantile regression-based Bayesian joint modeling analysis of longitudinal-survival data, with application to an AIDS cohort study. LIFETIME DATA ANALYSIS 2020;26:339-368. [PMID: 31140028 DOI: 10.1007/s10985-019-09478-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
8
Tian Y, Wang L, Tang M, Tian M. Likelihood-based quantile mixed effects models for longitudinal data with multiple features via MCEM algorithm. COMMUN STAT-SIMUL C 2020. [DOI: 10.1080/03610918.2018.1484477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
9
Geraci M. Modelling and estimation of nonlinear quantile regression with clustered data. Comput Stat Data Anal 2019;136:30-46. [PMID: 31359897 PMCID: PMC6663105 DOI: 10.1016/j.csda.2018.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
10
Tian Y, Tang M, Tian M. Joint modeling for mixed-effects quantile regression of longitudinal data with detection limits and covariates measured with error, with application to AIDS studies. Comput Stat 2018. [DOI: 10.1007/s00180-018-0812-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
11
Zhang H, Huang Y, Wang W, Chen H, Langland-Orban B. Bayesian quantile regression-based partially linear mixed-effects joint models for longitudinal data with multiple features. Stat Methods Med Res 2017;28:569-588. [PMID: 28936916 DOI: 10.1177/0962280217730852] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA