1
|
Rustand D, van Niekerk J, Krainski ET, Rue H, Proust-Lima C. Fast and flexible inference for joint models of multivariate longitudinal and survival data using integrated nested Laplace approximations. Biostatistics 2024; 25:429-448. [PMID: 37531620 PMCID: PMC11017128 DOI: 10.1093/biostatistics/kxad019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023] Open
Abstract
Modeling longitudinal and survival data jointly offers many advantages such as addressing measurement error and missing data in the longitudinal processes, understanding and quantifying the association between the longitudinal markers and the survival events, and predicting the risk of events based on the longitudinal markers. A joint model involves multiple submodels (one for each longitudinal/survival outcome) usually linked together through correlated or shared random effects. Their estimation is computationally expensive (particularly due to a multidimensional integration of the likelihood over the random effects distribution) so that inference methods become rapidly intractable, and restricts applications of joint models to a small number of longitudinal markers and/or random effects. We introduce a Bayesian approximation based on the integrated nested Laplace approximation algorithm implemented in the R package R-INLA to alleviate the computational burden and allow the estimation of multivariate joint models with fewer restrictions. Our simulation studies show that R-INLA substantially reduces the computation time and the variability of the parameter estimates compared with alternative estimation strategies. We further apply the methodology to analyze five longitudinal markers (3 continuous, 1 count, 1 binary, and 16 random effects) and competing risks of death and transplantation in a clinical trial on primary biliary cholangitis. R-INLA provides a fast and reliable inference technique for applying joint models to the complex multivariate data encountered in health research.
Collapse
Affiliation(s)
- Denis Rustand
- Statistics Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Janet van Niekerk
- Statistics Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Elias Teixeira Krainski
- Statistics Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Håvard Rue
- Statistics Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Cécile Proust-Lima
- Bordeaux Population Health Center, Inserm, UMR1219, Univ. Bordeaux, F-33000 Bordeaux, France
| |
Collapse
|
2
|
Raunig DL, Pennello GA, Delfino JG, Buckler AJ, Hall TJ, Guimaraes AR, Wang X, Huang EP, Barnhart HX, deSouza N, Obuchowski N. Multiparametric Quantitative Imaging Biomarker as a Multivariate Descriptor of Health: A Roadmap. Acad Radiol 2023; 30:159-182. [PMID: 36464548 PMCID: PMC9825667 DOI: 10.1016/j.acra.2022.10.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 12/02/2022]
Abstract
Multiparametric quantitative imaging biomarkers (QIBs) offer distinct advantages over single, univariate descriptors because they provide a more complete measure of complex, multidimensional biological systems. In disease, where structural and functional disturbances occur across a multitude of subsystems, multivariate QIBs are needed to measure the extent of system malfunction. This paper, the first Use Case in a series of articles on multiparameter imaging biomarkers, considers multiple QIBs as a multidimensional vector to represent all relevant disease constructs more completely. The approach proposed offers several advantages over QIBs as multiple endpoints and avoids combining them into a single composite that obscures the medical meaning of the individual measurements. We focus on establishing statistically rigorous methods to create a single, simultaneous measure from multiple QIBs that preserves the sensitivity of each univariate QIB while incorporating the correlation among QIBs. Details are provided for metrological methods to quantify the technical performance. Methods to reduce the set of QIBs, test the superiority of the mp-QIB model to any univariate QIB model, and design study strategies for generating precision and validity claims are also provided. QIBs of Alzheimer's Disease from the ADNI merge data set are used as a case study to illustrate the methods described.
Collapse
Affiliation(s)
- David L Raunig
- Department of Statistical and Quantitative Sciences, Data Science Institute, Takeda Pharmaceuticals, Cambridge, Massachusetts.
| | - Gene A Pennello
- Center for Devices and Radiological Health, US Food and Drug Administration Division of Imaging, Diagnostic and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | - Jana G Delfino
- Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland
| | | | - Timothy J Hall
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin
| | - Alexander R Guimaraes
- Department of Diagnostic Radiology, Oregon Health & Sciences University, Portland, Oregon
| | - Xiaofeng Wang
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland, Ohio
| | - Erich P Huang
- Biometric Research Program, Division of Cancer Treatment and Diagnosis - National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Huiman X Barnhart
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina
| | - Nandita deSouza
- Division of Radiotherapy and Imaging, the Insitute of Cancer Research and Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Nancy Obuchowski
- Department of Quantitative Health Sciences, Lerner Research Institute Cleveland Clinic Foundation, Cleveland, Ohio
| |
Collapse
|
3
|
Rubio C, Alfaro M, Mejia-Giraldo A, Fuertes G, Mosquera R, Vargas M. Multivariate analysis in data science for the geospatial distribution of the breast cancer mortality rate in Colombia. Front Oncol 2023; 12:1055655. [PMID: 36686819 PMCID: PMC9853892 DOI: 10.3389/fonc.2022.1055655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023] Open
Abstract
This research is framed in the area of biomathematics and contributes to the epidemiological surveillance entities in Colombia to clarify how breast cancer mortality rate (BCM) is spatially distributed in relation to the forest area index (FA) and circulating vehicle index (CV). In this regard, the World Health Organization has highlighted the scarce generation of knowledge that relates mortality from tumor diseases to environmental factors. Quantitative methods based on geospatial data science are used with cross-sectional information from the 2018 census; it's found that the BCM in Colombia is not spatially randomly distributed, but follows cluster aggregation patterns. Under multivariate modeling methods, the research provides sufficient statistical evidence in terms of not rejecting the hypothesis that if a spatial unit has high FA and low CV, then it has significant advantages in terms of lower BCM.
Collapse
Affiliation(s)
- Carlos Rubio
- Facultad de Ingeniería, Universidad de San Buenaventura, Cali, Colombia
| | - Miguel Alfaro
- Industrial Engineering Department, University of Santiago de Chile, Santiago, Chile
| | | | - Guillermo Fuertes
- Industrial Engineering Department, University of Santiago de Chile, Santiago, Chile,Faculty of Engineering, Science and Technology, Universidad Bernardo O’Higgins, Santiago, Chile,*Correspondence: Guillermo Fuertes,
| | - Rodolfo Mosquera
- Escuela de Estudios Industriales y Empresariales, Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Manuel Vargas
- Industrial Engineering Department, University of Santiago de Chile, Santiago, Chile
| |
Collapse
|
4
|
Pan D, Song X, Pan J. Joint analysis of multivariate failure time data with latent variables. Stat Methods Med Res 2022; 31:1292-1312. [DOI: 10.1177/09622802221089028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We propose a joint modeling approach to investigate the observed and latent risk factors of the multivariate failure times of interest. The proposed model comprises two parts. The first part is a distribution-free confirmatory factor analysis model that characterizes the latent factors by correlated multiple observed variables. The second part is a multivariate additive hazards model that assesses the observed and latent risk factors of the failure times. A hybrid procedure that combines the borrow-strength estimation approach and the asymptotically distribution-free generalized least square method is developed to estimate the model parameters. The asymptotic properties of the proposed estimators are derived. Simulation studies demonstrate that the proposed method performs well for practical settings. An application to a study concerning the risk factors of multiple diabetic complications is provided.
Collapse
Affiliation(s)
- Deng Pan
- School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyuan Song
- Department of Statistics, The Chinese University of Hong Kong, Hong Kong, China
| | - Junhao Pan
- Department of Psychology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|