1
|
Paul S, Daga P, Dey N. Exploring Various Photochemical Processes in Optical Sensing of Pesticides by Luminescent Nanomaterials: A Concise Discussion on Challenges and Recent Advancements. ACS OMEGA 2023; 8:44395-44423. [PMID: 38046331 PMCID: PMC10688216 DOI: 10.1021/acsomega.3c02753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 12/05/2023]
Abstract
Food safety is a burning global issue in this present era. The prevalence of harmful food additives and contaminants in everyday food is a significant cause for concern as they can adversely affect human health. More particularly, among the different food contaminants, the use of excessive pesticides in agricultural products is severely hazardous. So, the optical detection of residual pesticides is an effective strategy to counter the hazardous effect and ensure food safety. In this perspective, nanomaterials have played a leading role in defending the open threat against food safety instigated by the reckless use of pesticides. Now, nanomaterial-based optical detection of pesticides has reached full pace and needs an inclusive discussion. This Review covers the advancement of photoprocess-based optical detection of pesticides categorically using nanomaterials. Here, we have thoroughly dissected the photoprocesses (aggregation and aggregation-induced emission (AIE), charge transfer and intramolecular charge transfer (ICT), electron transfer and photoinduced electron transfer (PET), fluorescence resonance energy transfer (FRET), hydrogen bonding, and inner filter effect) and categorically demarcated their significant role in the optical detection of pesticides by luminescent nanomaterials over the last few years.
Collapse
Affiliation(s)
- Suvendu Paul
- Department
of Chemistry, BITS-Pilani Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | - Pooja Daga
- Department
of Chemistry, Siksha-Bhavana, Visva-Bharati
University, Santiniketan, West Bengal 731235, India
| | - Nilanjan Dey
- Department
of Chemistry, BITS-Pilani Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| |
Collapse
|
2
|
Fernandes RS, Paul S, Dey N. Sequence-Specific Relay Recognition of Multiple Anions: An Interplay between Proton Donors and Acceptors. Chemphyschem 2023:e202300434. [PMID: 37727899 DOI: 10.1002/cphc.202300434] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/01/2023] [Accepted: 09/13/2023] [Indexed: 09/21/2023]
Abstract
Ratiometric detection of analyte is highly deserving since the technique is free from background correction. This work reports the design and synthesis of a pyridine-end oligo p-phenylenevinylene (OPV) derivative, 1 and its application in ratiometric dual-mode (both colorimetric and fluorogenic) recognition of dual anions, bisulfate (LOD=12.5 ppb) followed by fluoride (LOD=18.2 ppb) by sequence-specific relay (SPR) technique. The colorless probe turns brown with addition of bisulfate and again becomes colorless with the sequential addition of fluoride ion. In addition to such naked-eye color change, interestingly the ratiometric spectroscopic signals are reversible and evidently, the probe is reusable for several cycles. Besides, in presence of bisulfate, the protonated probe molecules, owing to their larger amphiphilic characteristics, formed self-assembled nanostructures. In addition to colorimetric and fluorescent changes, 1 H NMR titration and systematic DFT study evidently establish the underneath proton transfer mechanisms. Such reusable OPV-based chemosensor particularly with the capability of naked-eye recognition of dual anions using the SPR technique is seminal and possibly the first report in the literature.
Collapse
Affiliation(s)
- Rikitha S Fernandes
- Department of Chemistry, BITS-Pilani Hyderabad Campus Shameerpet, Hyderabad, 500078, Telangana, India
| | - Suvendu Paul
- Department of Chemistry, BITS-Pilani Hyderabad Campus Shameerpet, Hyderabad, 500078, Telangana, India
| | - Nilanjan Dey
- Department of Chemistry, BITS-Pilani Hyderabad Campus Shameerpet, Hyderabad, 500078, Telangana, India
| |
Collapse
|
3
|
Paul S, Mondal S, Dey N. Improved Analytical Performance of an Amphiphilic Probe upon Protein Encapsulation: Spectroscopic Investigation along with Computational Rationalization. ACS APPLIED BIO MATERIALS 2023; 6:1495-1503. [PMID: 36940402 DOI: 10.1021/acsabm.2c01046] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
An easily synthesizable pyrene-based amphiphilic probe (Pybpa) has been developed, which exhibited no responses with metal ions in the pure aqueous medium despite possessing a metal ion-chelating bispicolyl unit. We believe that spontaneous aggregation of Pybpa in aqueous medium makes the ion binding unit not accessible to the metal ions. However, the sensitivity and selectivity of Pybpa toward Zn2+ ions drastically improve in the presence of serum albumin protein, HSA. The differences in the microenvironment inside the protein cavity, in terms of local polarity, and conformational rigidity might be attributing factors for that. The mechanistic investigations also suggest that there might be the involvement of polar amino acid residues that take part in coordination with Zn2+ ions. Pybpa shows no detectable spectroscopic changes with Zn2+ ions in aqueous medium in the absence of HSA. However, it can effectively recognize Zn2+ ions in the protein-bound form. Moreover, the photophysical behavior of Pybpa and its zinc complex have been investigated with DFT and docking studies. Noteworthy, such an unusual sensing aspect of Zn2+ exclusively in the protein-bound state and particularly in aqueous medium is truly rare and innovative.
Collapse
Affiliation(s)
- Suvendu Paul
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Shameerpet, Hyderabad 500078 Telangana, India
| | - Sourav Mondal
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Shameerpet, Hyderabad 500078 Telangana, India
| | - Nilanjan Dey
- Department of Chemistry, BITS-Pilani Hyderabad Campus, Shameerpet, Hyderabad 500078 Telangana, India
| |
Collapse
|
4
|
Paul S, Ray Choudhury A, Dey N. Dual-Mode Multiple Ion Sensing via Analyte-Specific Modulation of Keto-Enol Tautomerization of an ESIPT Active Pyrene Derivative: Experimental Findings and Computational Rationalization. ACS OMEGA 2023; 8:6349-6360. [PMID: 36844601 PMCID: PMC9947992 DOI: 10.1021/acsomega.2c06559] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
A pyrene-based e xcited - state intramolecular proton transfer (ESIPT) active probe PMHMP was synthesized, characterized, and employed for the ppb-level, dual-mode, and high-fidelity detection of Cu2+ (LOD: 7.8 ppb) and Zn2+ ions (LOD: 4.2 ppb) in acetonitrile medium. The colorless solution of PMHMP turned yellow upon the addition of Cu2+, suggesting its ratiometric, naked-eye sensing. On the contrary, Zn2+ ions displayed concentration-dependent fluorescence rise till a 0.5 mole fraction and subsequent quenching. Mechanistic investigations indicated the formation of a 1:2 exciplex (Zn2+:PMHMP) at a lower concentration of Zn2+, which eventually turned into a more stable 1:1 (Zn2+:PMHMP) complex with an additional amount of Zn2+ ions. However, in both cases, it was observed that the hydroxyl group and the nitrogen atom of the azomethine unit were involved in the metal ion coordination, which eventually altered the ESIPT emission. Furthermore, a green-fluorescent 2:1 PMHMP-Zn2+ complex was developed and additionally employed for the fluorimetric analysis of both Cu2+ and H2PO4 - ions. The Cu2+ ion, owing to its higher binding affinity for PMHMP, could replace the Zn2+ ion from the preformed complex. On the other hand, H2PO4 - formed a tertiary adduct with the Zn2+-complex, leading to a distinguishable optical signal. Furthermore, extensive and organized density functional theory calculations were performed to explore the ESIPT behavior of PMHMP and the geometrical and electronic properties of the metal complexes.
Collapse
Affiliation(s)
- Suvendu Paul
- Department
of Chemistry, BITS-Pilani Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| | | | - Nilanjan Dey
- Department
of Chemistry, BITS-Pilani Hyderabad Campus, Shameerpet, Hyderabad, Telangana 500078, India
| |
Collapse
|
5
|
Bhattacharya P, De S. Simple naturally occurring β-carboline alkaloids – role in sustainable theranostics. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2022-0132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract
This review is a brief treatise on some simple β-carboline alkaloids that are abundantly available in plants, animals and foodstuff. These alkaloids are well known for their pharmacological action as well as their allelopathic behaviour. The focus of this review is on sustainable use of naturally occurring compounds in safeguarding human health and protecting our environment at large i.e. the prospective applications of these molecules for Sustainable Theranostics. The review commences with an initial introduction to the β-carboline alkaloids, followed by an outlay of their geographical distribution and natural abundance, then the basic structure and building units of the simplest β-carboline alkaloids have been mentioned. This is followed by a discussion on the important methods of extraction from natural sources both plants and animals. Then the foundation for the use of these alkaloids in Sustainable Theranostics has been built by discussing their interesting photophysics, interactions with important biological molecules and an extensive survey of their therapeutic potential and allelopathic behaviour. Finally the review ends with a silver lining mentioning the future prospective applications of these alkaloids with special relevance to sustainability issues.
Collapse
Affiliation(s)
| | - Swati De
- Department of Chemistry , University of Kalyani , Kalyani , 741235 , India
| |
Collapse
|
6
|
Ding S, Xia Y, Lin X, Sun A, Li X, Liu Y. A Theoretical Study of the Sensing Mechanism of a Schiff-Based Sensor for Fluoride. SENSORS 2022; 22:s22103958. [PMID: 35632367 PMCID: PMC9144756 DOI: 10.3390/s22103958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 12/07/2022]
Abstract
In the current work, we studied the sensing process of the sensor (E)-2-((quinolin-8ylimino) methyl) phenol (QP) for fluoride anion (F-) with a "turn on" fluorescent response by density functional theory (DFT) and time-dependent density functional theory (TDDFT) calculations. The proton transfer process and the twisted intramolecular charge transfer (TICT) process of QP have been explored by using potential energy curves as functions of the distance of N-H and dihedral angle C-N=C-C both in the ground and the excited states. According to the calculated results, the fluorescence quenching mechanism of QP and the fluorescent response for F- have been fully explored. These results indicate that the current calculations completely reproduce the experimental results and provide compelling evidence for the sensing mechanism of QP for F-.
Collapse
Affiliation(s)
- Sha Ding
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (Y.X.); (X.L.); (A.S.)
| | - Yong Xia
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (Y.X.); (X.L.); (A.S.)
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiaoqi Lin
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (Y.X.); (X.L.); (A.S.)
| | - Aokui Sun
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (Y.X.); (X.L.); (A.S.)
| | - Xianggang Li
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (Y.X.); (X.L.); (A.S.)
- Correspondence: (X.L.); (Y.L.); Tel.: +86-0731-22183055 (X.L.)
| | - Yuejun Liu
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China; (S.D.); (Y.X.); (X.L.); (A.S.)
- Correspondence: (X.L.); (Y.L.); Tel.: +86-0731-22183055 (X.L.)
| |
Collapse
|
7
|
Paul S, Fernandes RS, Dey N. Ppb-Level, Dual Channel Sensing of Cyanide and Bisulfate Ions in Aqueous Medium: Computational Rationalization of Ion-Dependent ICT Mechanism. NEW J CHEM 2022. [DOI: 10.1039/d2nj03021g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this report, three oxidized diindolylarylmethane (DIAM) based chromogenic probes (designated as 1, 2, and 3) have been developed for the simultaneous and dual-channel detection of cyanide (LOD: 6.2 ppb)...
Collapse
|
8
|
Roy S, Paul P, Karar M, Joshi M, Paul S, Choudhury AR, Biswas B. Cascade detection of fluoride and bisulphate ions by newly developed hydrazine functionalised Schiff bases. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115293] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Paul S, Majumdar T, Mallick A. Hydrogen bond regulated hydrogen sulfate ion recognition: an overview. Dalton Trans 2021; 50:1531-1549. [PMID: 33439195 DOI: 10.1039/d0dt03611k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hydrogen sulfate possesses substantial biological importance, having a colossal impact on physiological and environmental events. Therefore, several scientific groups have devoted serious effort to the development of versatile colorimetric and fluorimetric HSO4- sensors. Along with the scope, challenges, and significance, this review emphasizes the advancement of the optical recognition of HSO4- based on hydrogen bonding during the past two decades. Moreover, hydrogen-bond-driven proton transfer, ESIPT, ICT, PET, CHEF, and TBET mechanisms that allow for the optical detection of HSO4- are also discussed concisely. The foundation of this review includes the key points of the sensing process, like the nature of spectroscopic changes, selectivity and sensitivity, naked-eye color changes, the reusability of sensors, and the in vivo detection of HSO4-, if any. Special attention is focused on the correlation between the photophysical changes and the underlying interaction mechanisms that triggered the recognition aspect.
Collapse
Affiliation(s)
- Suvendu Paul
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal-741235, India.
| | - Tapas Majumdar
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal-741235, India.
| | - Arabinda Mallick
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal-713340, India.
| |
Collapse
|
10
|
Kumar Pal C, Mahato S, Joshi M, Paul S, Roy Choudhury A, Biswas B. Transesterification activity by a zinc(II)-Schiff base complex with theoretical interpretation. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119541] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
11
|
Schiff base triggering synthesis of copper(II) complex and its catalytic fate towards mimics of phenoxazinone synthase activity. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119468] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Carbinol mediated clusterization of Nickel(II) ions in a Schiff base backbone: Structural & solution properties, phosphoester cleavage activity including theoretical support. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Das A, Dighe SU, Das N, Batra S, Sen P. β-carboline-based turn-on fluorescence chemosensor for quantitative detection of fluoride at PPB level. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 220:117099. [PMID: 31141766 DOI: 10.1016/j.saa.2019.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 05/24/2023]
Abstract
A novel β-carboline-based chemosensor, having an acidic NH proton that leads to fluoride-induced deprotonation involving a vivid color change from colorless to yellow is described. The absorption spectrum of the chemosensor in acetonitrile has a peak at 375 nm, which changes to 428 nm with the gradual addition of only fluoride in the solution with a clear isosbestic points at 357 nm and 392 nm. More interestingly, the chemosensor gives a turn-on type of fluorescence at 554 nm in the presence of fluoride. Further it was found that the sensor is highly selective towards fluoride over other anions including chloride, bromide, iodide, nitrate, borate, perchlorate and can quantitatively detect fluoride at ppb level with a limit of detection of 0.02 mg/ L or 20 ppb. The chemosensor was successfully demonstrated to assess the fluoride concentration in the tap water.
Collapse
Affiliation(s)
- Aritra Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Shashikant U Dighe
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Nilimesh Das
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India
| | - Sanjay Batra
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India.
| | - Pratik Sen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208 016, UP, India.
| |
Collapse
|
14
|
Paul S, Karar M, Paul P, Mallick A, Majumdar T. Dual mode nitro explosive detection under crowded condition: Conceptual development of a sensing device. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.04.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Garai M, Das A, Joshi M, Paul S, Shit M, Choudhury AR, Biswas B. Synthesis and spectroscopic characterization of a photo-stable tetrazinc(II)–Schiff base cluster: A rare case of ligand centric phenoxazinone synthase activity. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.09.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Phenoxazinone synthase and antimicrobial activity by a bis(1,3-diamino-2-propanolate) cobalt(III) complex. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1562-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
Karar M, Paul S, Biswas B, Majumdar T, Mallick A. A newly developed highly selective Zn 2+-AcO - ion-pair sensor through partner preference: equal efficiency under solitary and colonial situation. Dalton Trans 2018; 47:7059-7069. [PMID: 29744514 DOI: 10.1039/c8dt00362a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Unusual self-sorting of an ion-pair under highly crowded conditions driven by a synthesized intelligent molecule 2-((E)-(3-((E)-2-hydroxy-3-methoxybenzylideneamino)-2-hydroxypropyl imino)methyl)-6-methoxyphenol, hereafter HBP, is described. When a mixture of various metal salts was allowed to react with HBP, only a specific ion-pair ZnII/AcO- in the solution simultaneously reacted, resulting in high-fidelity ion-pair recognition of HBP. This phenomenon was evidenced by significant changes in the absorption spectra and huge enhancement in emission intensity of HBP. The property that one molecule preferring one particular cation-anion pair over others is a rare but interesting phenomenon. Thus, the potential to interact selectively with the targeted ion-pair resulting in the formation of a specific complex recognized HBP as a new class of molecule that might find future applications in real time and on-site monitoring and separation of new molecules.
Collapse
Affiliation(s)
- Monaj Karar
- Department of Chemistry, University of Kalyani, Nadia, West Bengal 741235, India.
| | - Suvendu Paul
- Department of Chemistry, University of Kalyani, Nadia, West Bengal 741235, India.
| | - Bhaskar Biswas
- Department of Chemistry, Surendranath College, Kolkata, West Bengal 700009, India
| | - Tapas Majumdar
- Department of Chemistry, University of Kalyani, Nadia, West Bengal 741235, India.
| | - Arabinda Mallick
- Department of Chemistry, Kashipur Michael Madhusudan Mahavidyalaya, Purulia, West Bengal 723132, India.
| |
Collapse
|
18
|
Paul S, Karar M, Das B, Mallick A, Majumdar T. Theory after experiment on sensing mechanism of a newly developed sensor molecule: Converging or diverging? Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|