1
|
Martinho LA, Andrade CKZ. HPW-Catalyzed environmentally benign approach to imidazo[1,2- a]pyridines. Beilstein J Org Chem 2024; 20:628-637. [PMID: 38533469 PMCID: PMC10964034 DOI: 10.3762/bjoc.20.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
The imidazo[1,2-a]pyridine moiety is present in drugs with several biological activities. The most direct way of obtaining this nucleus is the Groebke-Blackburn-Bienaymé three-component reaction (GBB-3CR) between aminopyridines, aldehydes, and isocyanides under both Lewis and Brønsted acid catalysis. However, several catalysts for this reaction have major drawbacks such as being expensive, extremely dangerous, strong oxidizing, and even explosive. In this scenario, heteropolyacids emerge as greener and safer alternatives due to their very strong Brønsted acidity. In particular, phosphotungstic acid (HPW) is an economical and green attractive catalyst for being cheap, non-toxic, and is known for its chemical and thermal stability. Herein, we report a straightforward approach to the GBB-3CR using HPW as catalyst in ethanol under microwave (μw) heating. This convenient environmentally benign methodology is broad in scope, provides the heterobicyclic products in high yields (up to 99%), with a low catalyst loading (2 mol %) in only 30 minutes, and allows the successful use of aliphatic aldehydes, substrates not so frequently explored with most usual catalysts for this reaction. Furthermore, the aforementioned advantages make this methodology very attractive and superior to the existing ones.
Collapse
Affiliation(s)
- Luan A Martinho
- Instituto de Química, Laboratório de Química Metodológica e Orgânica Sintética (LaQMOS), Universidade de Brasília, 70904-970, Brasília, DF, Brazil
| | - Carlos Kleber Z Andrade
- Instituto de Química, Laboratório de Química Metodológica e Orgânica Sintética (LaQMOS), Universidade de Brasília, 70904-970, Brasília, DF, Brazil
| |
Collapse
|
2
|
Sharma S, Singh D, Kumar S, Vaishali, Jamra R, Banyal N, Deepika, Malakar CC, Singh V. An efficient metal-free and catalyst-free C-S/C-O bond-formation strategy: synthesis of pyrazole-conjugated thioamides and amides. Beilstein J Org Chem 2023; 19:231-244. [PMID: 36895429 PMCID: PMC9989676 DOI: 10.3762/bjoc.19.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
An operationally simple and metal-free approach is described for the synthesis of pyrazole-tethered thioamide and amide conjugates. The thioamides were generated by employing a three-component reaction of diverse pyrazole C-3/4/5 carbaldehydes, secondary amines, and elemental sulfur in a single synthetic operation. The advantages of this developed protocol refer to the broad substrate scope, metal-free and easy to perform reaction conditions. Moreover, the pyrazole C-3/5-linked amide conjugates were also synthesized via an oxidative amination of pyrazole carbaldehydes and 2-aminopyridines using hydrogen peroxide as an oxidant.
Collapse
Affiliation(s)
- Shubham Sharma
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India
| | - Dharmender Singh
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India.,Central Revenues Control Laboratory, New Delhi-110012, India
| | - Sunit Kumar
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India
| | - Vaishali
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India
| | - Rahul Jamra
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India.,Department of Chemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Naveen Banyal
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India.,Department of Chemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Deepika
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India
| | - Chandi C Malakar
- Department of Chemistry, National Institute of Technology (NIT) Manipur, Imphal, 795004, India
| | - Virender Singh
- Department of Chemistry, Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar, 144027, Punjab, India.,Department of Chemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| |
Collapse
|
3
|
Anjos NS, Chapina AI, Santos AR, Licence P, Longo LS. Groebke‐Blackburn‐Bienaymé Multicomponent Reaction Catalysed by Reusable Brϕnsted‐Acidic Ionic Liquids. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nicolas S. Anjos
- Department of Pharmaceutical Sciences Federal University of São Paulo – UNIFESP Rua São Nicolau 210 09913-030 Diadema SP Brazil
| | - Agáta I. Chapina
- Department of Pharmaceutical Sciences Federal University of São Paulo – UNIFESP Rua São Nicolau 210 09913-030 Diadema SP Brazil
| | - Ana R. Santos
- GSK Carbon Neutral Laboratory The University of Nottingham – Jubilee Campus Nottingham NG7 2GA United Kingdom
| | - Peter Licence
- GSK Carbon Neutral Laboratory The University of Nottingham – Jubilee Campus Nottingham NG7 2GA United Kingdom
| | - Luiz S. Longo
- Department of Pharmaceutical Sciences Federal University of São Paulo – UNIFESP Rua São Nicolau 210 09913-030 Diadema SP Brazil
- GSK Carbon Neutral Laboratory The University of Nottingham – Jubilee Campus Nottingham NG7 2GA United Kingdom
| |
Collapse
|
4
|
Stahlberger M, Steinlein O, Adam CR, Rotter M, Hohmann J, Nieger M, Köberle B, Bräse S. Fluorescent annulated imidazo[4,5- c]isoquinolines via a GBB-3CR/imidoylation sequence - DNA-interactions in pUC-19 gel electrophoresis mobility shift assay. Org Biomol Chem 2022; 20:3598-3604. [PMID: 35420107 DOI: 10.1039/d2ob00372d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we report the development of a sequential synthesis route towards annulated imidazo[4,5-c]isoquinolines comprising a GBB-3CR, followed by an intramolecular imidoylative cyclisation. X-Ray crystallography revealed a flat 3D structure of the obtained polyheterocycles. Thus, we evaluated their interactions with double-stranded DNA by establishing a pUC-19 plasmid-based gel electrophoresis mobility shift assay, revealing a stabilising effect on ds-DNA against strand-break inducing conditions.
Collapse
Affiliation(s)
- M Stahlberger
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - O Steinlein
- Institute of Applied Biosciences, Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology (KIT), Adenauerring 20, 76131 Karlsruhe, Germany
| | - C R Adam
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - M Rotter
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - J Hohmann
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.
| | - M Nieger
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A. I. Virtasen aukio 1), 00014, Finland
| | - B Köberle
- Institute of Applied Biosciences, Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology (KIT), Adenauerring 20, 76131 Karlsruhe, Germany
| | - S Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany. .,Institute of Biological and Chemical Systems - IBCS-FMS, Karlsruhe Institute of Technology (KIT), Herman-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
5
|
Longo LS, Siqueira FA, Anjos NS, Santos GFD. Scandium(III)‐Triflate‐Catalyzed Multicomponent Reactions for the Synthesis of Nitrogen Heterocycles. ChemistrySelect 2021. [DOI: 10.1002/slct.202101032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Luiz S. Longo
- Department of Pharmaceutical Sciences Federal University of São Paulo - UNIFESP Rua São Nicolau 210 09913-030 Diadema SP Brazil
| | - Fernanda A. Siqueira
- Department of Chemistry Federal University of São Paulo - UNIFESP Rua Prof. Arthur Riedel 275 09972-270 Diadema SP Brazil
| | - Nicolas S. Anjos
- Department of Pharmaceutical Sciences Federal University of São Paulo - UNIFESP Rua São Nicolau 210 09913-030 Diadema SP Brazil
| | - Gabriela F. D. Santos
- Department of Pharmaceutical Sciences Federal University of São Paulo - UNIFESP Rua São Nicolau 210 09913-030 Diadema SP Brazil
| |
Collapse
|
6
|
Sharma S, Malakar CC, Singh V. Transition‐Metal‐Free C‐S Bond Forming Strategy towards Synthesis of Highly Diverse Pyrazole Tethered Benzothiazoles: Investigation of their Photophysical Properties. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Shubham Sharma
- Shubham Sharma Dr. Virender Singh Department of Chemistry Dr B R Ambedkar National Institute of Technology Jalandhar Punjab 144011 India
| | - Chandi C. Malakar
- Dr. Chandi C. Malakar Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 India
| | - Virender Singh
- Shubham Sharma Dr. Virender Singh Department of Chemistry Dr B R Ambedkar National Institute of Technology Jalandhar Punjab 144011 India
- Dr. Virender Singh Department of Chemistry Central University of Punjab Bathinda Punjab 151001 India
| |
Collapse
|
7
|
Brandão P, Burke AJ, Pineiro M. A Decade of Indium‐Catalyzed Multicomponent Reactions (MCRs). European J Org Chem 2020. [DOI: 10.1002/ejoc.202000596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Pedro Brandão
- CQC and Department of Chemistry University of Coimbra 3004‐535 Coimbra Portugal
- Departamento de Química de Évora and LAQV‐REQUIMTE University of Évora 7000‐671 Évora Portugal
| | - Anthony J. Burke
- Departamento de Química de Évora and LAQV‐REQUIMTE University of Évora 7000‐671 Évora Portugal
| | - Marta Pineiro
- CQC and Department of Chemistry University of Coimbra 3004‐535 Coimbra Portugal
| |
Collapse
|
8
|
Abstract
In this Review, we consider all the publications since the beginning of the century that describe tandem reactions resulting in the formation of five-membered aromatic nitrogen heterocycles (thiazole, imidazole, indole, tetrazole, triazole, and isoxazole). The contents of this review are organized by taxonomy and type of tandem catalysis. It covers orthogonal, auto-, and assisted tandem catalysis, providing an overview of tandem reactions applied tonitrogen heterocycles reported in the literature up to March 2020. We believe that this compilation of data will provide a necessary starting reference to developthe applications of tandem catalysis in medicinal chemistry.
Collapse
|
9
|
Sharma S, Paul AK, Singh V. La(OTf)3-catalysed one-pot synthesis of pyrazole tethered imidazo[1,2-a]azine derivatives and evaluation of their light emitting properties. NEW J CHEM 2020. [DOI: 10.1039/c9nj05426j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
La(OTf)3catalysed one-pot facile protocol has been unfolded towards diversity-oriented synthesis of highly fluorescent pyrazole C-3(5) tethered imidazo[1,2-a]azines.
Collapse
Affiliation(s)
- Shubham Sharma
- Department of Chemistry
- Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar
- India
| | - Avijit Kumar Paul
- Department of Chemistry
- National Institute of Technology (NIT) Kurukshetra
- India
| | - Virender Singh
- Department of Chemistry
- Dr B R Ambedkar National Institute of Technology (NIT) Jalandhar
- India
| |
Collapse
|
10
|
Boltjes A, Dömling A. The Groebke-Blackburn-Bienaymé Reaction. EUROPEAN JOURNAL OF CHEMISTRY (PRINT) 2019; 2019:7007-7049. [PMID: 34012704 PMCID: PMC8130801 DOI: 10.1002/ejoc.201901124] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 12/23/2022]
Abstract
Imidazo[1,2-a]pyridine is a well-known scaffold in many marketed drugs, such as Zolpidem, Minodronic acid, Miroprofen and DS-1 and it also serves as a broadly applied pharmacophore in drug discovery. The scaffold revoked a wave of interest when Groebke, Blackburn and Bienaymé reported independently a new three component reaction resulting in compounds with the imidazo[1,2-a]-heterocycles as a core structure. During the course of two decades the Groebke Blackburn Bienaymé (GBB-3CR) reaction has emerged as a very important multicomponent reaction (MCR), resulting in over a hundred patents and a great number of publications in various fields of interest. Now two compounds derived from GBB-3CR chemistry received FDA approval. To celebrate the first 20 years of GBB-chemistry, we present an overview of the chemistry of the GBB-3CR, including an analysis of each of the three starting material classes, solvents and catalysts. Additionally, a list of patents and their applications and a more in-depth summary of the biological targets that were addressed, including structural biology analysis, is given.
Collapse
Affiliation(s)
- André Boltjes
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, The Netherlands
| | - Alexander Dömling
- Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, The Netherlands
| |
Collapse
|
11
|
Devi N, Jana AK, Singh V. Assessment of novel pyrazolopyridinone fused imidazopyridines as potential antimicrobial agents. KARBALA INTERNATIONAL JOURNAL OF MODERN SCIENCE 2018. [DOI: 10.1016/j.kijoms.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
12
|
Devi N, Shankar R, Singh V. 4-Formyl-Pyrazole-3-Carboxylate: A Useful Aldo-X Bifunctional Precursor for the Syntheses of Pyrazole-fused/Substituted Frameworks. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.3045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nisha Devi
- Department of Chemistry; Dr B R Ambedkar National Institute of Technology; Jalandhar 144011 India
| | - Ravi Shankar
- Bio-Organic Chemistry Division; CSIR - Indian Institute of Integrative Medicine; Jammu 180001 India
| | - Virender Singh
- Department of Chemistry; Dr B R Ambedkar National Institute of Technology; Jalandhar 144011 India
| |
Collapse
|
13
|
Devi N, Singh D, Kaur G, Mor S, Putta VPRK, Polina S, Malakar CC, Singh V. In(OTf)3 assisted synthesis of β-carboline C-3 tethered imidazo[1,2-a]azine derivatives. NEW J CHEM 2017. [DOI: 10.1039/c6nj03210a] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synthesis of β-carboline based natural products and synthetic derivatives is one of the frontier areas of research owing to their medicinal properties.
Collapse
Affiliation(s)
- Nisha Devi
- Department of Chemistry
- National Institute of Technology (NIT) Jalandhar
- India
| | - Dharmender Singh
- Department of Chemistry
- National Institute of Technology (NIT) Jalandhar
- India
| | - Gurpreet Kaur
- Department of Chemistry
- National Institute of Technology (NIT) Jalandhar
- India
| | - Satbir Mor
- Department of Chemistry
- GJ University of Science and Technology Hisar
- India
| | | | - Saibabu Polina
- Department of Medicinal Chemistry
- Jubilant Biosys
- Bangalore
- India
| | - Chandi C. Malakar
- Department of Chemistry
- National Institute of Technology (NIT) Manipur
- Imphal
- India
| | - Virender Singh
- Department of Chemistry
- National Institute of Technology (NIT) Jalandhar
- India
| |
Collapse
|