1
|
Ghanbari E, Picken SJ, van Esch JH. Design Rules for Binary Bisamide Gelators: toward Gels with Tailor-Made Structures and Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12182-12195. [PMID: 37578393 PMCID: PMC10469460 DOI: 10.1021/acs.langmuir.3c01487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/26/2023] [Indexed: 08/15/2023]
Abstract
This study intends to develop design rules for binary mixture of gelators that govern their assembly behavior and subsequently explore the impact of their supramolecular assembly patterns on the gels' rheological properties. To achieve these goals, nBA gelators with odd and even parities [n-methylene spacers between the amide groups (n = 5-10) and 17 carbons at each end] were blended at different ratios. Such bisamides with simple structures were selected to study because their different spacer lengths offer the possibility to have matching or non-matching hydrogen bonds. The results show that the assembly behavior of binary mixtures of bisamide gelators is the same in the solid and gel states. Binary mixtures of gelators, which only differ two methylene moieties in the spacer length, form compounds and co-assemble into fibers and sheets observed for (5BA)1(7BA)1 and (6BA)1(8BA)1 mixtures, respectively. Binary gelator mixtures of the same parity and a larger spacer length difference still lead to mixing for the odd parity couple (5BA)1(9BA)1), but to partial phase separation for the even parity mixture (6BA)1(10BA)1. Binary mixtures of gelators of different parities gave complete phase separation in the solid state, and self-sorted gels consisting of discrete fibers and sheets in the gels of (5BA)3(6BA)1 and (5BA)3(10BA)1. The even-even binary gels (20 wt %) consisting of co-assembled sheets show higher G' than odd-odd binary gels (20 wt %) consisting of co-assembled fibers. In general, the self-sorting of odd and even molecules into the separate primary structures results in a dramatic decrease of G' compared to the co-assembled gels (20 wt %), except for (5BA)1(9BA)1 gel (20 wt %). It might be due to larger woven spheres in (5BA)1(9BA)1 gel (20 wt %), which probably have a less entangled gel network.
Collapse
Affiliation(s)
- Elmira Ghanbari
- Advanced Soft Matter (ASM) Group, Chemical
Engineering Department, Faculty of Applied Science (TNW), Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Stephen J. Picken
- Advanced Soft Matter (ASM) Group, Chemical
Engineering Department, Faculty of Applied Science (TNW), Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Jan H. van Esch
- Advanced Soft Matter (ASM) Group, Chemical
Engineering Department, Faculty of Applied Science (TNW), Delft University of Technology, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
2
|
Sudhakaran Jayabhavan S, Kuppadakkath G, Damodaran KK. The Role of Functional Groups in Tuning the Self-Assembly Modes and Physical Properties of Multicomponent Gels. Chempluschem 2023; 88:e202300302. [PMID: 37407430 DOI: 10.1002/cplu.202300302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/07/2023]
Abstract
We have analyzed the nature and role of functional groups on the self-assembly modes and the physical properties of multicomponent gels with structurally similar individual components. The gelation properties of individual and mixed enantiomeric compounds of biphenyl bis-(amides) of alanine (BPA) or phenylalanine (BPP) methyl ester were analyzed in various solvent/solvent mixtures. Multicomponent gels were formed by mixing the enantiomeric BPP compounds at a lower concentration, but a higher concentration was required for mixed alanine-based BPA gels. The comparison of the mechanical strength of the individual and mixed BPP compounds indicated that the mixed BPP gels displayed enhanced mechanical strength (∼2-fold increase) in p-xylene, but a weaker gel was observed in DMSO/water. However, a reverse trend was observed for BPA gels, indicating the role of functional groups in the gel network formation. X-ray diffraction analysis of the gelator and the xerogels in the solid state confirmed the formation of co-assembled networks in mixed enantiomeric gels. The stability of the gels towards anions was evaluated by analyzing the anion induced stimuli-responsive properties. These results indicate the effective modeling of the functional groups of the individual components could lead to multicomponent gels with tunable properties.
Collapse
Affiliation(s)
| | | | - Krishna K Damodaran
- Department of Chemistry, University of Iceland, Dunhagi 3, 107, Reykjavík, Iceland
| |
Collapse
|
3
|
Guo S, Song M, Gao X, Dong L, Hou T, Lin X, Tan W, Cao Y, Rogers M, Lan Y. Assembly pattern of multicomponent supramolecular oleogel composed of ceramide and lecithin in sunflower oil: self-assembly or self-sorting? Food Funct 2020; 11:7651-7660. [PMID: 32896846 DOI: 10.1039/d0fo00635a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ceramide (CER) is a novel food-grade organogelator with beneficial health effects. Lecithin (LEC) is not an effective gelator; however, it may alter the crystal morphology of the host gelator in a multicomponent system. In this paper, LEC and CER were mixed at various molar ratios in sunflower oil leading to different gelation behaviors. It was interesting since in this multicomponent system, gels formed when there was more less-effective gelator (LEC), while gels hardly formed when there was more effective gelator (CER). This drew our attention since there might not be only one kind of assembly mode between the LEC and the CER. A comprehensive rheological investigation was conducted. It was found that at specific ratios (6L4C and 5L5C), strong gels (G' > 1.0 × 105 Pa) formed with superior oil binding capacity (up to 99.84%). Meanwhile, these gels exhibited higher tolerance level to permanent deformation than the monocomponent gel. However, weak gels were observed off the optimal ratio (8L2C, 7L3C, 4L6C and 3L7C). The crystal morphology of gels drastically changed with change in gelator proportion. Short needle-like crystals and small rosette crystals were observed in 6L4C and 5L5C, respectively, while other samples exhibited spherulite-shaped crystals (8L2C, 7L3C, 4L6C, and 3L7C), which differed from any of the monocomponent gel structures (10L0C and 0L10C). Results from differential scanning calorimetry and polarized light microscopy suggested that the macroscopic properties are determined by the morphology and distribution of crystals rather than the crystallinity of the matrix. Fourier transform infrared spectroscopy results indicated the presence of van der Waals forces and the formation of hydrogen bonding between the phosphate of the LEC and the amide group of the CER. The above results indicated that the LEC and CER co-assembled at approximately equal molar ratio, and the redundant LEC or CER at other ratios self-sorted to combine with the co-assembled fibers by lateral association, leading to potentially different underlying microstructures. These multicomponent supramolecular oleogels with high tunability may further broaden their applicability in various healthy lipid-based product formats.
Collapse
Affiliation(s)
- Shenglan Guo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P.R. China
| | - Xiangyang Gao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P.R. China
| | - Lulu Dong
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.
| | - Tao Hou
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China. and Research and Development Centre, Infinitus (China) Company Ltd., Guangzhou, Guangdong 510623, P.R. China
| | - Xiaokun Lin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.
| | - Weijie Tan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P.R. China
| | - Michael Rogers
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2 W1, Canada
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China. and Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, P.R. China
| |
Collapse
|