1
|
Xiong J, Lu X, Li W, Yang S, Zhang R, Li X, Han J, Li D, Yu Z. One-Pot Tandem Transformation of Inulin as Fructose-Rich Platform Towards 5-Hydroxymethylfurfural: Feedstock Advantages, Acid-Site Regulation and Solvent Effects. CHEMSUSCHEM 2023; 16:e202201936. [PMID: 36545829 DOI: 10.1002/cssc.202201936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The valorization of non-grain biomass feedstocks to value-added chemicals, polymers and alternative fuels is a crucial route for the utilization of renewable resources. Inulin belongs to a type of fructans, which is a pivotal platform bridging upstream fructose-rich biomass feedstocks typically represented by Jerusalem artichoke and downstream platform molecules such as alcohols, aldehydes and acids. Fructose can be directly obtained from the inulin hydrolysis and further converted into various platform chemicals, which is a more environmentally economical route than the conventional catalytic upgrading of cellulose. Nevertheless, most perspectives over the last decade have focused on the valorization of cellulose-derived carbohydrates, without much emphasis on the practical importance of one-pot transformation of inulin. In this review, we aim to demonstrate an efficient one-pot tandem transformation system of the inulin as fructose-rich platform towards 5-hydroxymethylfurfural (HMF). Core concerns are placed on elucidating the contributing roles of acid sites and solvents in enhancing the overall catalytic performance. The perspectives presented in this review may contribute to the innovation in the catalytic refining of fructose-rich non-grain biomass and the development of a greener biomass-based energy system.
Collapse
Affiliation(s)
- Jian Xiong
- School of Science, Tibet University, Lhasa, 850000, P. R. China
| | - Xuebin Lu
- School of Science, Tibet University, Lhasa, 850000, P. R. China
| | - Wei Li
- School of Science, Tibet University, Lhasa, 850000, P. R. China
| | - Shijie Yang
- School of Science, Tibet University, Lhasa, 850000, P. R. China
| | - Rui Zhang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin, 300384, P. R. China
| | - Xiaoyun Li
- School of Agriculture, Sun Yat-Sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Jinfeng Han
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Dan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Zhihao Yu
- School of Environmental Science and Engineering, Tianjin Key Laboratory of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
2
|
Depolymerization of P4HB and PBS Waste and Synthesis of the Anticancer Drug Busulfan from Plastic Waste. Catalysts 2022. [DOI: 10.3390/catal12040381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sustainable synthesis of pharmaceuticals is one of the main challenges for the pharmaceutical industry. Production of these compounds from plastic waste can provide an innovative and ecological approach to their sustainable synthesis. In this context, plastic waste can be regarded as a potential cheap resource for the production of compounds of interest to the pharmaceutical industry. In this work, the first methodologies for the reductive depolymerization of poly(4-hydroxybutyrate) (P4HB) and polybutylene succinate (PBS) plastic waste are reported using the catalyst systems MoO2Cl2(H2O)2/silane, MoO2Cl2(H2O)2/borane and KOH/PhSiH3 with moderate to excellent yields. We also developed the first synthetic strategy for the synthesis of a drug, the anticancer busulfan, from P4HB and PBS plastic waste with moderate overall yields.
Collapse
|
3
|
Carreira MA, Oliveira MC, Fernandes AC. One-pot sustainable synthesis of valuable nitrogen compounds from biomass resources. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Suárez-Pantiga S, Sanz R. Deoxygenation reactions in organic synthesis catalyzed by dioxomolybdenum(VI) complexes. Org Biomol Chem 2021; 19:10472-10492. [PMID: 34816863 DOI: 10.1039/d1ob01939b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dioxomolybdenum(VI) complexes have been applied as efficient, inexpensive and benign catalysts to deoxygenation reactions of a diverse number of compounds in the last two decades. Dioxomolybdenum complexes have demonstrated wide applicability to the deoxygenation of sulfoxides into sulfides and reduction of N-O bonds. Even the challenging nitro functional group was efficiently deoxygenated, affording amines or diverse heterocycles after reductive cyclization reactions. More recently, carbon-based substrates like epoxides, alcohols and ketones have been successfully deoxygenated. Also, dioxomolybdenum complexes accomplished deoxydehydration (DODH) reactions of biomass-derived vicinal 1,2-diols, affording valuable alkenes. The choice of the catalytic systems and reductant is decisive to achieve the desired transformation. Commonly found reducing agents involved phosphorous-based compounds, silanes, molecular hydrogen, or even glycols and other alcohols.
Collapse
Affiliation(s)
- Samuel Suárez-Pantiga
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias, Pza, Misael Bañuelos, s/n, Universidad de Burgos, 09001 Burgos, Spain.
| | - Roberto Sanz
- Área de Química Orgánica, Departamento de Química, Facultad de Ciencias, Pza, Misael Bañuelos, s/n, Universidad de Burgos, 09001 Burgos, Spain.
| |
Collapse
|
5
|
Heo JB, Lee YS, Chung CH. Seagrass-based platform strategies for sustainable hydroxymethylfurfural (HMF) production: toward bio-based chemical products. Crit Rev Biotechnol 2021; 41:902-917. [PMID: 33648387 DOI: 10.1080/07388551.2021.1892580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Today, sustainable chemistry is a key trend in the chemical manufacturing industry due mainly to concerns over the global environment and resource security. In sustainable chemical manufacture, the choice of a bio-based feedstock plays a pivotal pillar. In terms of feedstock utilization for producing HMF, which is a multivalent platform intermediate easily convertible to valuable chemical products; biopolymers, biofuels, and other important chemicals, seagrass biomasses can be more favorable feedstocks compared with land plant resources due primarily to easy availability and no systematic farming. Moreover, seagrass feedstocks could contribute cost-effectively and sustainably producing HMF by exploiting the beach-cast seagrasses on seagrass-prairies with no feedstock cost, indicating that seagrass biomasses could be a most promising biofeedstock source for sustainable HMF production. We afford a platform bioprocessing technology that has not been attempted before for sustainable HMF production using raw seagrass biomass. This bioprocess can be operated by simple reaction conditions using inorganic Brønsted acids (mainly HCl) and ionic liquid solvents at relatively low temperatures (120-130 °C). In addition, some bioengineering strategies for improving the growth of seagrass biomass and the quantity/quality of nonstructural carbohydrates (starch, sucrose) that can be used as the feeding substrates for HMF production are also discussed. The main aim of this review is to provide some important information about breakthrough bio/technologies conducive to cost-effective and sustainable HMF production.
Collapse
Affiliation(s)
- Jae Bok Heo
- Department of Molecular Genetic Biotechnology, Dong-A University, Busan, South Korea
| | - Yong-Suk Lee
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, South Korea
| | - Chung-Han Chung
- Department of Biotechnology, Dong-A University, Busan, South Korea
| |
Collapse
|
6
|
Value-Added Bio-Chemicals Commodities from Catalytic Conversion of Biomass Derived Furan-Compounds. Catalysts 2020. [DOI: 10.3390/catal10080895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The depletion of fossil resources in the near future and the need to decrease greenhouse gas emissions lead to the investigation of using alternative renewable resources as raw materials. One of the most promising options is the conversion of lignocellulosic biomass (like forestry residues) into bioenergy, biofuels and biochemicals. Among these products, the production of intermediate biochemicals has become an important goal since the petrochemical industry needs to find sustainable alternatives. In this way, the chemical industry competitiveness could be improved as bioproducts have a great potential market. Thus, the main objective of this review is to describe the production processes under study (reaction conditions, type of catalysts, solvents, etc.) of some promising intermediate biochemicals, such as; alcohols (1,2,6-hexanetriol, 1,6-hexanetriol and pentanediols (1,2 and 1,5-pentanediol)), maleic anhydride and 5-alkoxymethylfuran. These compounds can be produced using 5-hydroxymethylfurfural and/or furfural, which they both are considered one of the main biomass derived building blocks.
Collapse
|
7
|
Thiruvengetam P, Chakravarthy RD, Chand DK. A molybdenum based metallomicellar catalyst for controlled and chemoselective oxidation of activated alcohols in aqueous medium. J Catal 2019. [DOI: 10.1016/j.jcat.2019.06.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Upgrading of Carbohydrates to the Biofuel Candidate 5-Ethoxymethylfurfural (EMF). INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2018. [DOI: 10.1155/2018/2316939] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
5-Ethoxymethylfurfural (EMF), one of the significant platform molecular derivatives, is regarded as a promising biofuel and additive for diesel, owing to its high energy density (8.7 kWh·L−1). Several catalytic materials have been developed for the synthesis of EMF derived from different feedstocks under relatively mild reaction conditions. Although a great quantity of research has been conducted over the past decades, the unsatisfactory production selectivity mostly limited to the range 50%–70%, and the classic fructose used as the substrate restricted its application for fuel manufacture in large scale. To address these production improvements, this review pays attention to evaluate the activity of various catalysts (e.g., mineral salts, zeolites, heteropolyacid-based hybrids, sulfonic acid-functionalized materials, and ionic liquids), providing potential research directions for the design of novel catalysts for the achievement of further improved EMF yields.
Collapse
|