1
|
Pakeeraiah K, Chinchilli KK, Dandela R, Paidesetty SK. Exploration of triazole derivatives, SAR profiles, and clinical pipeline against Mycobacterium tuberculosis. Bioorg Chem 2025; 155:108114. [PMID: 39756201 DOI: 10.1016/j.bioorg.2024.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/07/2025]
Abstract
Tuberculosis is a highly infectious disease and it is a global threat in particular affecting people from developing countries. It is thought that nearly one-third of the global population lives with this causative bacterium in its dominant form. The spread of HIV and the development of resistance to both multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB) aggravates the spread of the disease and needs novel drugs which combat this disease effectively. Triazole-containing anti-tubercular drugs are promising and need further tuning to develop as a potent scaffold for tuberculosis. In this review, we highlight the structural activity relationships of triazole-containing drugs and detailed understanding for the researchers in the field of medicinal chemistry to further explore these triazole-based compounds as well as synthesize new compounds for antitubercular activity against drug-sensitive and resistant strains.
Collapse
Affiliation(s)
- Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha 751003, India.
| | | | - Rambabu Dandela
- Institute of Chemical Technology-Indian Oil Campus, Bhubaneswar Odisha 751024, India.
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha 751003, India.
| |
Collapse
|
2
|
Vasanthan RJ, Pradhan S, Thangamuthu MD. Emerging Aspects of Triazole in Organic Synthesis: Exploring its Potential as a Gelator. Curr Org Synth 2024; 21:456-512. [PMID: 36221871 DOI: 10.2174/1570179420666221010094531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC) - commonly known as the "click reaction" - serves as the most effective and highly reliable tool for facile construction of simple to complex designs at the molecular level. It relates to the formation of carbon heteroatomic systems by joining or clicking small molecular pieces together with the help of various organic reactions such as cycloaddition, conjugate addition, ring-opening, etc. Such dynamic strategy results in the generation of triazole and its derivatives from azides and alkynes with three nitrogen atoms in the five-membered aromatic azole ring that often forms gel-assembled structures having gelating properties. These scaffolds have led to prominent applications in designing advanced soft materials, 3D printing, ion sensing, drug delivery, photonics, separation, and purification. In this review, we mainly emphasize the different mechanistic aspects of triazole formation, which includes the synthesis of sugar-based and non-sugar-based triazoles, and their gel applications reported in the literature for the past ten years, as well as the upcoming scope in different branches of applied sciences.
Collapse
Affiliation(s)
- Rabecca Jenifer Vasanthan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India
| | - Sheersha Pradhan
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India
| | - Mohan Das Thangamuthu
- Department of Chemistry, School of Basic and Applied Sciences, Central University of Tamil Nadu (CUTN), Thiruvarur, 610 005, India
| |
Collapse
|
3
|
Verma A, Naik B, Kumar V, Mishra S, Choudhary M, Khan JM, Gupta AK, Pandey P, Rustagi S, Kakati B, Gupta S. Revolutionizing Tuberculosis Treatment: Uncovering New Drugs and Breakthrough Inhibitors to Combat Drug-Resistant Mycobacterium tuberculosis. ACS Infect Dis 2023; 9:2369-2385. [PMID: 37944023 DOI: 10.1021/acsinfecdis.3c00436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Tuberculosis (TB) is a global health threat that causes significant mortality. This review explores chemotherapeutics that target essential processes in Mycobacterium tuberculosis, such as DNA replication, protein synthesis, cell wall formation, energy metabolism, and proteolysis. We emphasize the need for new drugs to treat drug-resistant strains and shorten the treatment duration. Emerging targets and promising inhibitors were identified by examining the intricate biology of TB. This review provides an overview of recent developments in the search for anti-TB drugs with a focus on newly validated targets and inhibitors. We aimed to contribute to efforts to combat TB and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Ankit Verma
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Bindu Naik
- Department of Food Science and Technology, Graphic Era Deemed to be University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura 281406, UP, India
| | - Megha Choudhary
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh 11451, Saudi Arabia
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era Deemed to be University, Bell Road, Clement Town, Dehradun 248002, Uttarakhand, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchur 788011, Assam, India
| | - Sarvesh Rustagi
- Department of Food Technology, UCALS, Uttaranchal University, Dehradun 248007, Uttarakhand, India
| | - Barnali Kakati
- Department of Microbiology, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, U.K., India
| | - Sanjay Gupta
- Himalayan School of Biosciences, Swami Rama Himalayan University, Jolly Grant, Dehradun 248016, Uttarakhand, India
| |
Collapse
|
4
|
Chagaleti BK, Reddy MBR, Saravanan V, B S, D P, Senthil Kumar P, Kathiravan MK. An overview of mechanism and chemical inhibitors of shikimate kinase. J Biomol Struct Dyn 2023; 41:14582-14598. [PMID: 36974959 DOI: 10.1080/07391102.2023.2193985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/04/2023] [Indexed: 03/29/2023]
Abstract
Tuberculosis is a highly infectious disease other than HIV/AIDS and it is one of the top ten causes of death worldwide. Resistance development in the bacteria occurs because of genetic alterations, and the molecular insights suggest that the accumulation of mutation in the individual drug target genes is the primary mechanism of multi-drug resistant tuberculosis. Chorismate is an essential structural fragment for the synthesis of aromatic amino acids and synthesized biochemically by a number of bacteria, including Mycobacterium tuberculosis, utilizing the shikimate pathway. This shikimate kinase is the newer possible target for the generation of novel antitubercular drug because this pathway is expressed only in mycobacterium and not in Mammals. The discovery and development of shikimate kinase inhibitors provide an opportunity for the development of novel selective medications. Multiple shikimate kinase inhibitors have been identified via insilico virtual screening and related protein-ligand interactions along with their in-vitro studies. These inhibitors bind to the active site in a similar fashion to shikimate. In the current review, we present an overview of the biology and chemistry of the shikimate kinase protein and its inhibitors, with special emphasis on the various active scaffold against the enzyme. A variety of chemically diversified synthetic scaffolds including Benzothiazoles, Oxadiazoles, Thiobarbiturates, Naphthoquinones, Thiazoleacetonitriles, Hybridized Pyrazolone derivatives, Orthologous biological macromolecule derivatives, Manzamine Alkaloids derivatives, Dipeptide inhibitor, and Chalcones are discussed in detail. These derivatives bind to the specific target appropriately proving their potential ability through different binding interactions and effectively explored as an effective and selective Sk inhibitor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bharath Kumar Chagaleti
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM IST Kattankulathur, Kancheepuram, Tamil Nadu, India
| | - M B Rahul Reddy
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM IST Kattankulathur, Kancheepuram, Tamil Nadu, India
| | - Venkatesan Saravanan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM IST Kattankulathur, Kancheepuram, Tamil Nadu, India
| | - Shanthakumar B
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM IST Kattankulathur, Kancheepuram, Tamil Nadu, India
| | - Priya D
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM IST Kattankulathur, Kancheepuram, Tamil Nadu, India
| | - P Senthil Kumar
- Faculty of Pharmacy, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - M K Kathiravan
- 209, Dr. APJ Abdul Kalam Research Lab, Dept of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM IST Kattankulathur, Kancheepuram, Tamil Nadu, India
| |
Collapse
|
5
|
Khan SA, Akhtar MJ, Gogoi U, Meenakshi DU, Das A. An Overview of 1,2,3-triazole-Containing Hybrids and Their Potential Anticholinesterase Activities. Pharmaceuticals (Basel) 2023; 16:179. [PMID: 37259329 PMCID: PMC9961747 DOI: 10.3390/ph16020179] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 07/30/2023] Open
Abstract
Acetylcholine (ACh) neurotransmitter of the cholinergic system in the brain is involved in learning, memory, stress responses, and cognitive functioning. It is hydrolyzed into choline and acetic acid by two key cholinesterase enzymes, viz., acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). A loss or degeneration of cholinergic neurons that leads to a reduction in ACh levels is considered a significant contributing factor in the development of neurodegenerative diseases (NDs) such as Alzheimer's disease (AD). Numerous studies have shown that cholinesterase inhibitors can raise the level of ACh and, therefore, enhance people's quality of life, and, at the very least, it can temporarily lessen the symptoms of NDs. 1,2,3-triazole, a five-membered heterocyclic ring, is a privileged moiety, that is, a central scaffold, and is capable of interacting with a variety of receptors and enzymes to exhibit a broad range of important biological activities. Recently, it has been clubbed with other pharmacophoric fragments/molecules in hope of obtaining potent and selective AChE and/or BuChE inhibitors. The present updated review succinctly summarizes the different synthetic strategies used to synthesize the 1,2,3-triazole moiety. It also highlights the anticholinesterase potential of various 1,2,3-triazole di/trihybrids reported in the past seven years (2015-2022), including a rationale for hybridization and with an emphasis on their structural features for the development and optimization of cholinesterase inhibitors to treat NDs.
Collapse
Affiliation(s)
- Shah Alam Khan
- College of Pharmacy, National University of Science and Technology, Muscat 130, Oman
| | | | - Urvashee Gogoi
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, India
| | | | - Aparoop Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh 786004, India
| |
Collapse
|
6
|
Prospects of Using Pharmacologically Active Compounds for the Creation of Antimycobacterial Drugs. Pharm Chem J 2022. [DOI: 10.1007/s11094-021-02544-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Bonam SR, Rénia L, Tadepalli G, Bayry J, Kumar HMS. Plasmodium falciparum Malaria Vaccines and Vaccine Adjuvants. Vaccines (Basel) 2021; 9:1072. [PMID: 34696180 PMCID: PMC8541031 DOI: 10.3390/vaccines9101072] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
Malaria-a parasite vector-borne disease-is a global health problem, and Plasmodium falciparum has proven to be the deadliest among Plasmodium spp., which causes malaria in humans. Symptoms of the disease range from mild fever and shivering to hemolytic anemia and neurological dysfunctions. The spread of drug resistance and the absence of effective vaccines has made malaria disease an ever-emerging problem. Although progress has been made in understanding the host response to the parasite, various aspects of its biology in its mammalian host are still unclear. In this context, there is a pressing demand for the development of effective preventive and therapeutic strategies, including new drugs and novel adjuvanted vaccines that elicit protective immunity. The present article provides an overview of the current knowledge of anti-malarial immunity against P. falciparum and different options of vaccine candidates in development. A special emphasis has been made on the mechanism of action of clinically used vaccine adjuvants.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, F-75006 Paris, France;
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs, 8A Biomedical Grove, Singapore 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Ganesh Tadepalli
- Vaccine Immunology Laboratory, Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India;
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, F-75006 Paris, France;
- Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad 678623, India
| | - Halmuthur Mahabalarao Sampath Kumar
- Vaccine Immunology Laboratory, Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India;
| |
Collapse
|
8
|
Synthesis, Characterization and Biological Evaluation of New 3,5-Disubstituted-Pyrazoline Derivatives as Potential Anti- Mycobacterium tuberculosis H37Ra Compounds. Molecules 2021; 26:molecules26072081. [PMID: 33916423 PMCID: PMC8038544 DOI: 10.3390/molecules26072081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/02/2022] Open
Abstract
A total of fourteen pyrazoline derivatives were synthesized through cyclo-condensation reactions by chalcone derivatives with different types of semicarbazide. These compounds were characterized by IR, 1D-NMR (1H, 13C and Distortionless Enhancement by Polarization Transfer - DEPT-135) and 2D-NMR (COSY, HSQC and HMBC) as well as mass spectroscopy analysis (HRMS). The synthesized compounds were tested for their antituberculosis activity against Mycobacterium tuberculosis H37Ra in vitro. Based on this activity, compound 4a showed the most potent inhibitory activity, with a minimum inhibitory concentration (MIC) value of 17 μM. In addition, six other synthesized compounds, 5a and 5c–5g, exhibited moderate activity, with MIC ranges between 60 μM to 140 μM. Compound 4a showed good bactericidal activity with a minimum bactericidal concentration (MBC) value of 34 μM against Mycobacterium tuberculosis H37Ra. Molecular docking studies for compound 4a on alpha-sterol demethylase was done to understand and explore ligand–receptor interactions, and to hypothesize potential refinements for the compound.
Collapse
|
9
|
Triazole-containing hybrids with anti- Mycobacterium tuberculosis potential - Part I: 1,2,3-Triazole. Future Med Chem 2021; 13:643-662. [PMID: 33619989 DOI: 10.4155/fmc-2020-0301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tuberculosis regimens currently applied in clinical practice require months of multidrug therapy, which imposes a major challenge of patient compliance and drug resistance development. Moreover, because of the increasing emergence of hard-to-treat tuberculosis, this disease continues to be a significant threat to the human population. 1,2,3-triazole as a privileged structure has been widely used as an effective template for drug discovery, and 1,2,3-triazole-containing hybrids that can simultaneously act on dual or multiple targets in Mycobacterium tuberculosis have the potential to circumvent drug resistance, enhance efficacy, reduce side effects and improve pharmacokinetic as well as pharmacodynamic profiles. Thus, 1,2,3-triazole-containing hybrids are useful scaffolds for the development of antitubercular agents. This review aims to highlight recent advances of 1,2,3-triazole-containing hybrids with potential activity against various forms of M. tuberculosis, covering articles published between 2015 and 2020. The structure-activity relationship and the mechanism of action are also discussed to facilitate further rational design of more effective drug candidates.
Collapse
|
10
|
Shetye GS, Franzblau SG, Cho S. New tuberculosis drug targets, their inhibitors, and potential therapeutic impact. Transl Res 2020; 220:68-97. [PMID: 32275897 DOI: 10.1016/j.trsl.2020.03.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/18/2022]
Abstract
The current tuberculosis (TB) predicament poses numerous challenges and therefore every incremental scientific work and all positive socio-political engagements, are steps taken in the right direction to eradicate TB. Progression of the late stage TB-drug pipeline into the clinics is an immediate deliverable of this global effort. At the same time, fueling basic research and pursuing early discovery work must be sustained to maintain a healthy TB-drug pipeline. This review encompasses a broad analysis of chemotherapeutic strategies that target the DNA replication, protein synthesis, cell wall biosynthesis, energy metabolism and proteolysis of Mycobacterium tuberculosis (Mtb). It includes a status check of the current TB-drug pipeline with a focus on the associated biology, emerging targets, and their promising chemical inhibitors. Potential synergies and/or gaps within or across different chemotherapeutic strategies are systematically reviewed as well.
Collapse
Affiliation(s)
- Gauri S Shetye
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois
| | - Sanghyun Cho
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois.
| |
Collapse
|
11
|
Mondal D, Balakrishna MS. Triazole Appended Phosphines: Synthesis, Palladium Complexes, and Catalytic Studies. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dipanjan Mondal
- Phosphorus Laboratory; Department of Chemistry; Indian Institute of Technology Bombay; 400076 Powai Mumbai India
| | - Maravanji S. Balakrishna
- Phosphorus Laboratory; Department of Chemistry; Indian Institute of Technology Bombay; 400076 Powai Mumbai India
| |
Collapse
|
12
|
Hooshmand SE, Ghadari R, Mohammadian R, Shaabani A, Khavasi HR. Rhodanine‐Furan Bis‐Heterocyclic Frameworks Synthesis via Green One‐Pot Sequential Six‐Component Reactions: A Synthetic and Computational Study. ChemistrySelect 2019. [DOI: 10.1002/slct.201903361] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Seyyed Emad Hooshmand
- Faculty of ChemistryShahid Beheshti University, G. C. P.O. Box 19396–4716 Tehran Iran
| | - Rahim Ghadari
- Department of Organic and BiochemistryFaculty of ChemistryUniversity of Tabriz, Tabriz Iran
| | - Reza Mohammadian
- Faculty of ChemistryShahid Beheshti University, G. C. P.O. Box 19396–4716 Tehran Iran
| | - Ahmad Shaabani
- Faculty of ChemistryShahid Beheshti University, G. C. P.O. Box 19396–4716 Tehran Iran
| | - Hamid Reza Khavasi
- Faculty of ChemistryShahid Beheshti University, G. C. P.O. Box 19396–4716 Tehran Iran
| |
Collapse
|