1
|
Kashyap V, Pandikassala A, Singla G, Khan TS, Ali Haider M, Vinod CP, Kurungot S. Unravelling faradaic electrochemical efficiencies over Fe/Co spinel metal oxides using surface spectroscopy and microscopy techniques. NANOSCALE 2022; 14:15928-15941. [PMID: 36268905 DOI: 10.1039/d2nr04170g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cobalt and iron metal-based oxide catalysts play a significant role in energy devices. To unravel some interesting parameters, we have synthesized metal oxides of cobalt and iron (i.e. Fe2O3, Co3O4, Co2FeO4 and CoFe2O4), and measured the effect of the valence band structure, morphology, size and defects in the nanoparticles towards the electrocatalytic hydrogen evolution reaction (HER), the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). The compositional variations in the cobalt and iron precursors significantly alter the particle size from 60 to <10 nm and simultaneously the shape of the particles (cubic and spherical). The Tauc plot obtained from the solution phase ultraviolet (UV) spectra of the nanoparticles showed band gaps of 2.2, 2.3, 2.5 and 2.8 eV for Fe2O3, Co3O4, Co2FeO4 and CoFe2O4, respectively. Further, the valence band structure and work function analysis using ultraviolet photoelectron spectroscopy (UPS) and core level X-ray photoelectron spectroscopy (XPS) analyses provided better structural insight into metal oxide catalysts. In the Co3O4 system, the valence band structure favors the HER and Fe2O3 favors the OER. The composites Co2FeO4 and CoFe2O4 show a significant change in their core level (O 1s, Co 2p and Fe 2p spectra) and valence band structure. Co3O4 shows an overpotential of 370 mV against 416 mV for Fe2O3 at a current density of 2 mA cm-2 for the HER. Similarly, Fe2O3 shows an overpotential of 410 mV against the 435 mV for Co3O4 at a current density of 10 mA cm-2 for the OER. However, for the ORR, Co3O4 shows 70 mV improvement in the half-wave potential against Fe2O3. The composites (Co2FeO4 and CoFe2O4) display better performance compared to their respective parent oxide systems (i.e., Co3O4 and Fe2O3, respectively) in terms of the ORR half-wave potential, which can be attributed to the presence of the oxygen vacancies over the surface in these systems. This was further corroborated in density functional theory (DFT) simulations, wherein the oxygen vacancy formation on the surface of CoFe2O4(001) was calculated to be significantly lower (∼50 kJ mol-1) compared to Co3O4 (001). The band diagram of the nanoparticles constructed from the various spectroscopic measurements with work function and band gap provides in-depth understanding of the electrocatalytic process.
Collapse
Affiliation(s)
- Varchaswal Kashyap
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 41108, India.
- Academy of Scientific and Innovative Research, Postal Staff College Area, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh-201002, India
| | - Ajmal Pandikassala
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 41108, India.
- Academy of Scientific and Innovative Research, Postal Staff College Area, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh-201002, India
| | - Gourav Singla
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 41108, India.
| | - Tuhin Suvra Khan
- Nanocatalysis Area, Light Stock Processing Division, CSIR-Indian Institute of Petroleum, Dehradun 248005, Uttarakhand, India.
| | - M Ali Haider
- Renewable Energy and Chemicals Laboratory, Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, Delhi 110016, India
| | - C P Vinod
- Academy of Scientific and Innovative Research, Postal Staff College Area, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh-201002, India
- Catalysis and Inorganic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 41108, India.
| | - Sreekumar Kurungot
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 41108, India.
- Academy of Scientific and Innovative Research, Postal Staff College Area, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh-201002, India
| |
Collapse
|
2
|
K Lebechi A, Ipadeola AK, Eid K, Abdullah AM, Ozoemena KI. Porous spinel-type transition metal oxide nanostructures as emergent electrocatalysts for oxygen reduction reactions. NANOSCALE 2022; 14:10717-10737. [PMID: 35861592 DOI: 10.1039/d2nr02330j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Porous spinel-type transition metal oxide (PS-TMO) nanocatalysts comprising two kinds of metal (denoted as AxB3-xO4, where A, B = Co, Ni, Zn, Mn, Fe, V, Sm, Li, and Zn) have emerged as promising electrocatalysts for oxygen reduction reactions (ORRs) in energy conversion and storage systems (ECSS). This is due to the unique catalytic merits of PS-TMOs (such as p-type conductivity, optical transparency, semiconductivity, multiple valence states of their oxides, and rich active sites) and porous morphologies with great surface area, low density, abundant transportation paths for intermediate species, maximized atom utilization and quick charge mobility. In addition, PS-TMOs nanocatalysts are easily prepared in high yield from Earth-abundant and inexpensive metal precursors that meet sustainability requirements and practical applications. Owing to the continued developments in the rational synthesis of PS-TMOs nanocatalysts for ORRs, it is utterly imperative to provide timely updates and highlight new advances in this research area. This review emphasizes recent research advances in engineering the morphologies and compositions of PS-TMOs nanocatalysts in addition to their mechanisms, to decipher their structure-activity relationships. Also, the ORR mechanisms and fundamentals are discussed, along with the current barriers and future outlook for developing the next generation of PS-TMOs nanocatalysts for large-scale ECSS.
Collapse
Affiliation(s)
- Augustus K Lebechi
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South Africa.
| | | | - Kamel Eid
- Gas Processing Center (GPC), College of Engineering, Qatar University, Doha 2713, Qatar.
| | | | - Kenneth I Ozoemena
- Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, PO Wits, Johannesburg 2050, South Africa.
| |
Collapse
|
3
|
Kashyap V, Anand A, Soni R, Sreekumar K. Medium Modulated Oxygen Reduction Activity of Fe/Co Active Centre‐engrafted Electrocatalysts. ChemElectroChem 2019. [DOI: 10.1002/celc.201900260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Varchaswal Kashyap
- Physical and Materials Chemistry DivisionCSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 41108 India
- Academy of Scientific and Innovative ResearchInstitutionAnusandhan Bhawan 2 RafiMarg New Delhi 110001 India
| | - Aljo Anand
- Physical and Materials Chemistry DivisionCSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 41108 India
| | - Roby Soni
- Physical and Materials Chemistry DivisionCSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 41108 India
- Academy of Scientific and Innovative ResearchInstitutionAnusandhan Bhawan 2 RafiMarg New Delhi 110001 India
| | - Kurungot Sreekumar
- Physical and Materials Chemistry DivisionCSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune 41108 India
- Academy of Scientific and Innovative ResearchInstitutionAnusandhan Bhawan 2 RafiMarg New Delhi 110001 India
| |
Collapse
|
4
|
High-Performing PGM-Free AEMFC Cathodes from Carbon-Supported Cobalt Ferrite Nanoparticles. Catalysts 2019. [DOI: 10.3390/catal9030264] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Efficient and durable non-precious metal electrocatalysts for the oxygen reduction reaction (ORR) are highly desirable for several electrochemical devices, including anion exchange membrane fuel cells (AEMFCs). Here, cobalt ferrite (CF) nanoparticles supported on Vulcan XC-72 carbon (CF-VC) were created through a facile, scalable solvothermal method. The nano-sized CF particles were spherical with a narrow particle size distribution. The CF-VC catalyst showed good ORR activity, possessing a half-wave potential of 0.71 V. Although the intrinsic activity of the CF-VC catalyst was not as high as some other platinum group metal (PGM)-free catalysts in the literature, where this catalyst really shined was in operating AEMFCs. When used as the cathode in a single cell 5 cm−2 AEMFC, the CF-VC containing electrode was able to achieve a peak power density of 1350 mW cm−2 (iR-corrected: 1660 mW cm−2) and a mass transport limited current density of more than 4 A cm−2 operating on H2/O2. Operating on H2/Air (CO2-free), the same cathode was able to achieve a peak power density of 670 mW cm−2 (iR-corrected: 730 mW cm−2) and a mass transport limited current density of more than 2 A cm−2. These peak power and achievable current densities are among the highest reported values in the literature to date.
Collapse
|
5
|
Liu T, Zhang X, Huang T, Yu A. Pyridinic-N-dominated carbon frameworks with porous tungsten trioxide nano-lamellae as a promising bi-functional catalyst for Li-oxygen batteries. NANOSCALE 2018; 10:15763-15770. [PMID: 30094424 DOI: 10.1039/c8nr04026e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The rational design and synthetic route to fabricate hybrid materials with desirable electrocatalytic functionalities remain critical but still challenging for sustainable energy devices. Here, we constructed a tungsten trioxide nano-lamellae chemically anchored with pyridinic-N-dominated doped CNT/graphene frameworks (W-NCG) via a general solution-based synthesis method. The detailed results indicated that this hybrid structure is composed of vacancy-defect abundant WO3 porous nanoflakes anchoring through or onto a 3D N-doped carbon matrix. After a facile post-annealing treatment, the W-NCG sample is utilized as a bi-functional catalyst for rechargeable lithium-oxygen batteries. The optimized sample with a large BET surface exhibits unprecedented ORR/OER activity in the cell, and satisfying specific capacity (∼7850 mA h g-1) and cycling stability. This excellent electrochemical performance can be ascribed to the pseudo 3D structure with sufficient microspace and good electrical conductivity, which facilitate the high dispersion of active components and effectivly relieve the formation of large/irreversible Li2O2. As such, this porous W-NCG framework is a prospective high-performance cathode material for Li-O2 batteries.
Collapse
Affiliation(s)
- Tie Liu
- Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, Fudan University, Shanghai 200438, China.
| | | | | | | |
Collapse
|
6
|
Li Z, Hassan M, Sun A, Bo X, Zhou M. Crab Shell-Templated Fe and N Co-Doped Mesoporous Carbon Nanofibers as a Highly Efficient Oxygen Reduction Reaction Electrocatalyst. ChemistrySelect 2018. [DOI: 10.1002/slct.201800251] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhenyi Li
- Laboratory of Nanobiosensing and Nanobioanalysis at University of Jilin Province; Department of Chemistry; Northeast Normal University; 5268 Renmin Street, Changchun Jilin Province 130024, P.R. China
| | - Mehboob Hassan
- Laboratory of Nanobiosensing and Nanobioanalysis at University of Jilin Province; Department of Chemistry; Northeast Normal University; 5268 Renmin Street, Changchun Jilin Province 130024, P.R. China
| | - An Sun
- Artificial Intelligence Key Laboratory of Sichuan Province; School of Automation and Information Engineering Sichuan University of Science and Engineering; Zigong 643000 Sichuan
| | - Xiangjie Bo
- Laboratory of Nanobiosensing and Nanobioanalysis at University of Jilin Province; Department of Chemistry; Northeast Normal University; 5268 Renmin Street, Changchun Jilin Province 130024, P.R. China
| | - Ming Zhou
- Laboratory of Nanobiosensing and Nanobioanalysis at University of Jilin Province; Department of Chemistry; Northeast Normal University; 5268 Renmin Street, Changchun Jilin Province 130024, P.R. China
| |
Collapse
|