1
|
Cicetti S, Maestre E, Spanevello RA, Sarotti A. Towards the Synthesis of Highly Hindered Pyrrolidines by Intramolecular AAC Click Reactions: What Can Be Learned from DFT Calculations? European J Org Chem 2022. [DOI: 10.1002/ejoc.202200478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Soledad Cicetti
- IQUIR: Instituto de Quimica Rosario Organic Chemistry Department ARGENTINA
| | - Eugenia Maestre
- IQUIR: Instituto de Quimica Rosario Organic Chemistry Department ARGENTINA
| | | | - Ariel Sarotti
- IQUIR Química Orgánica Suipacha 570 2000 Rosario ARGENTINA
| |
Collapse
|
2
|
Organocatalyst Design for the Stereoselective Annulation towards Bicyclic Diketones and Analogues. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020355] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Wieland–Miescher ketone, Hajos–Parrish–Eder–Sauer–Wiechert ketone, and their analogues are bicyclic diketones essential as building blocks for the synthesis of several natural and bioactive molecules. For this reason, since 1971, when Hajos and Parrish and Eder, Sauer, and Wiechert reported the stereoselective synthesis of these compounds promoted by L-proline, numerous methodologies and organocatalysts have been studied over the years with the aim of identifying increasingly efficient asymmetrical syntheses of these bicyclic ketones. This review will outline the methodological and stereochemical features of the organocatalytic stereoselective synthesis of these bicyclic scaffolds based on the different organocatalysts employed from 1971 until today. Particular emphasis will be given to the structural features of the catalysts and to the reaction conditions.
Collapse
|
3
|
Yilmaz DG, Aydogan F, Yolacan C. An investigation of chiral diamides as organocatalysts in asymmetric aldol reaction. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dilek Gul Yilmaz
- Department of Chemistry Yildiz Technical University, Davutpasa Campus, 34010 Esenler Istanbul Turkey
| | - Feray Aydogan
- Department of Chemistry Yildiz Technical University, Davutpasa Campus, 34010 Esenler Istanbul Turkey
| | - Cigdem Yolacan
- Department of Chemistry Yildiz Technical University, Davutpasa Campus, 34010 Esenler Istanbul Turkey
| |
Collapse
|
4
|
Juaristi E. Recent developments in next generation (S)-proline-derived chiral organocatalysts. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
5
|
Abstract
The aldol reaction which is the most important one among the C-C bond forming reactions,
is widely used by synthetic organic chemists to obtain β-hydroxycarbonyl compounds which are important
starting components for biologically active compounds in optically pure form. In this research,
five Pro-Phe derivatives were synthesized by simple amidation reactions and characterized by their
spectral data. Their catalytic activities in asymmetric aldol reaction were investigated. The catalytic
activity studies were performed with aliphatic ketones and various aromatic aldehydes. Especially, (S)-
methyl 3-mercapto-2-((S)-3-phenyl-2-((S)-pyrrolidine-2-carboxamido)propanamido)propanoate showed
good catalytic activities in water at 0oC in the presence of p-nitrobenzoic acid cocatalyst. The enantioselectivities
were up to 90.4%, the diastereomeric ratios were up to 97/3 and yields were 99%. The
results showed that these organocatalysts were promising organocatalysts for aldol reaction. Besides,
this catalyst showed its best catalytic activities in water which is also an important contribution to
green chemistry requirements.
Collapse
Affiliation(s)
- Merve Karaoglu
- Department of Chemistry, Yildiz Technical University, Davutpasa Campus, 34010 Esenler, Istanbul,Turkey
| | - Feray Aydogan
- Department of Chemistry, Yildiz Technical University, Davutpasa Campus, 34010 Esenler, Istanbul,Turkey
| | - Cigdem Yolacan
- Department of Chemistry, Yildiz Technical University, Davutpasa Campus, 34010 Esenler, Istanbul,Turkey
| |
Collapse
|
6
|
Sánchez-Antonio O, Romero-Sedglach KA, Vázquez-Orta EC, Juaristi E. New Mesoporous Silica-Supported Organocatalysts Based on (2S)-(1,2,4-Triazol-3-yl)-Proline: Efficient, Reusable, and Heterogeneous Catalysts for the Asymmetric Aldol Reaction. Molecules 2020; 25:molecules25194532. [PMID: 33022926 PMCID: PMC7583865 DOI: 10.3390/molecules25194532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/02/2023] Open
Abstract
Novel organocatalytic systems based on the recently developed (S)-proline derivative (2S)-[5-(benzylthio)-4-phenyl-(1,2,4-triazol)-3-yl]-pyrrolidine supported on mesoporous silica were prepared and their efficiency was assessed in the asymmetric aldol reaction. These materials were fully characterized by FT-IR, MS, XRD, and SEM microscopy, gathering relevant information regarding composition, morphology, and organocatalyst distribution in the doped silica. Careful optimization of the reaction conditions required for their application as catalysts in asymmetric aldol reactions between ketones and aldehydes afforded the anticipated aldol products with excellent yields and moderate diastereo- and enantioselectivities. The recommended experimental protocol is simple, fast, and efficient providing the enantioenriched aldol product, usually without the need of a special work-up or purification protocol. This approach constitutes a remarkable improvement in the field of heterogeneous (S)-proline-based organocatalysis; in particular, the solid-phase silica-bonded catalytic systems described herein allow for a substantial reduction in solvent usage. Furthermore, the supported system described here can be recovered, reactivated, and reused several times with limited loss in catalytic efficiency relative to freshly synthesized organocatalysts.
Collapse
Affiliation(s)
- Omar Sánchez-Antonio
- Departamento de Química, Centro de Investigación y de Estudios Avanzados, Avenida IPN # 2508, 07360 Ciudad de México, Mexico; (O.S.-A.); (K.A.R.-S.); (E.C.V.-O.)
| | - Kevin A. Romero-Sedglach
- Departamento de Química, Centro de Investigación y de Estudios Avanzados, Avenida IPN # 2508, 07360 Ciudad de México, Mexico; (O.S.-A.); (K.A.R.-S.); (E.C.V.-O.)
| | - Erika C. Vázquez-Orta
- Departamento de Química, Centro de Investigación y de Estudios Avanzados, Avenida IPN # 2508, 07360 Ciudad de México, Mexico; (O.S.-A.); (K.A.R.-S.); (E.C.V.-O.)
| | - Eusebio Juaristi
- Departamento de Química, Centro de Investigación y de Estudios Avanzados, Avenida IPN # 2508, 07360 Ciudad de México, Mexico; (O.S.-A.); (K.A.R.-S.); (E.C.V.-O.)
- El Colegio Nacional, Luis González Obregón # 23, Centro Histórico, 06020 Ciudad de México, Mexico
- Correspondence: or
| |
Collapse
|
7
|
Gerosa GG, Marcarino MO, Spanevello RA, Suárez AG, Sarotti AM. Re-Engineering Organocatalysts for Asymmetric Friedel–Crafts Alkylation of Indoles through Computational Studies. J Org Chem 2020; 85:9969-9978. [DOI: 10.1021/acs.joc.0c01256] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Gabriela G. Gerosa
- Instituto de Quı́mica Rosario (CONICET-UNR), Facultad de Ciencias Bioquı́micas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Maribel O. Marcarino
- Instituto de Quı́mica Rosario (CONICET-UNR), Facultad de Ciencias Bioquı́micas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Rolando A. Spanevello
- Instituto de Quı́mica Rosario (CONICET-UNR), Facultad de Ciencias Bioquı́micas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Alejandra G. Suárez
- Instituto de Quı́mica Rosario (CONICET-UNR), Facultad de Ciencias Bioquı́micas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Ariel M. Sarotti
- Instituto de Quı́mica Rosario (CONICET-UNR), Facultad de Ciencias Bioquı́micas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| |
Collapse
|
8
|
Hagiwara H. Aspects in the Total Syntheses of Higher Terpenoids Starting From Wieland–Miescher Ketone and Its Derivative: A Review. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20925340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Synthetic studies of higher terpenoids starting from Wieland–Miescher ketone since 2012 have been compiled.
Collapse
Affiliation(s)
- Hisahiro Hagiwara
- Graduate School of Science and Technology, Niigata University, Nishi-Ku, Niigata, Japan
| |
Collapse
|