1
|
Thunga S, Singh N, Inapanuri M, Kokatla HP. Rongalite induced metal-free C(sp 2)-H functionalization of indoles: direct access to 3-(sulfonylmethyl) indoles. Org Biomol Chem 2024; 22:8787-8792. [PMID: 39397700 DOI: 10.1039/d4ob01356e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A rongalite-induced C(sp2)-H functionalization reaction has been developed for the synthesis of 3-(phenylsulfonylmethyl) indole derivatives from indole and arylsulfonyl hydrazides. This regioselective C-H functionalization provides a wide range of C-3 sulfonylmethyl indoles with upto 90% yields. Here, rongalite functions as a C1 unit source and a single electron donor. The use of inexpensive rongalite (ca. $0.03 per 1 g), mild reaction conditions and gram-scale synthesis are some of the key features of this methodology.
Collapse
Affiliation(s)
- Sanjeeva Thunga
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana-506004, India.
| | - Neetika Singh
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana-506004, India.
| | - Madhu Inapanuri
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana-506004, India.
| | - Hari Prasad Kokatla
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana-506004, India.
| |
Collapse
|
2
|
Golla S, Kokatla HP. Rongalite-Mediated Transition Metal- and Hydride-Free Chemoselective Reduction of α-Keto Esters and α-Keto Amides. J Org Chem 2022; 87:9915-9925. [PMID: 35839148 DOI: 10.1021/acs.joc.2c00936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A transition metal- and hydride-free protocol has been developed for the chemoselective reduction of α-keto esters and α-keto amides using rongalite as a reducing agent. Here, rongalite acts as a hydride-free reducing agent via a radical mechanism. This protocol offers the synthesis of a wide range of α-hydroxy esters and α-hydroxy amides with 85-98% yields. This chemoselective method is compatible with other reducible functionalities such as halides, alkenes, amides, and nitriles. The use of inexpensive rongalite (ca. $0.03/1 g), mild reaction conditions, and gram-scale synthesis are some of the key features of this methodology. Also, cyclandelate, a vasodilator drug, has been synthesized in gram scale with 79% yield.
Collapse
Affiliation(s)
- Sivaparwathi Golla
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana 506004, India
| | - Hari Prasad Kokatla
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana 506004, India
| |
Collapse
|
3
|
Golla S, Jalagam S, Poshala S, Kokatla HP. Transition metal-free functionalization of 2-oxindoles via sequential aldol and reductive aldol reactions using rongalite as a C1 reagent. Org Biomol Chem 2022; 20:4926-4932. [PMID: 35506377 DOI: 10.1039/d2ob00665k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A sequential one-pot classical aldol, transition-metal and hydride-free reductive aldol reaction is reported here for C(sp3)- H functionalization of 2-oxindoles using the multifaceted reagent rongalite. Here, rongalite functions as a hydride-free reducing agent and double C1 unit donor. This protocol enables the synthesis of a wide range of 3-methylindoline-2-ones and 3-(hydroxymethyl)-3-methylindolin-2-ones from 2-oxindoles (65-95% yields), which are the synthetic precursors for many natural products. Some of the important aspects of this synthetic approach include one-pot methylation and hydroxymethylation, low-cost rongalite (ca. $0.03 per 1 g), mild reaction conditions and applicability to gram-scale synthesis.
Collapse
Affiliation(s)
- Sivaparwathi Golla
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana-506004, India.
| | - Swathi Jalagam
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana-506004, India.
| | - Soumya Poshala
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana-506004, India.
| | - Hari Prasad Kokatla
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana-506004, India.
| |
Collapse
|
4
|
Golla S, Anugu N, Jalagam S, Kokatla HP. Rongalite-induced transition-metal and hydride-free reductive aldol reaction: a rapid access to 3,3'-disubstituted oxindoles and its mechanistic studies. Org Biomol Chem 2022; 20:808-816. [PMID: 34994750 DOI: 10.1039/d1ob02284a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A transition-metal and hydride-free reductive aldol reaction has been developed for the synthesis of biologically active 3,3'-disubstituted oxindoles from isatin derivatives using rongalite. In this protocol, rongalite plays a dual role as a hydride-free reducing agent and a C1 unit donor. This transition metal-free method enables the synthesis of a wide range of 3-hydroxy-3-hydroxymethyloxindoles and 3-amino-3-hydroxymethyloxindoles with 79-96% yields. One-pot reductive hydroxymethylation, inexpensive rongalite (ca. $0.03/1 g), mild reaction conditions and short reaction time are some of the key features of this synthetic method. This protocol is also applicable to gram scale synthesis.
Collapse
Affiliation(s)
- Sivaparwathi Golla
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana-506004, India.
| | - Naveenkumar Anugu
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana-506004, India.
| | - Swathi Jalagam
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana-506004, India.
| | - Hari Prasad Kokatla
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana-506004, India.
| |
Collapse
|
5
|
Chen XL, Wu CY, Ma JT, Zhuang SY, Yu ZC, Wu YD, Wu AX. Rongalite as C1 Synthon and Sulfone Source: A Practical Sulfonylmethylation Based on the Separate-Embedding Strategy. Org Lett 2021; 24:223-227. [PMID: 34913708 DOI: 10.1021/acs.orglett.1c03877] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Rongalite has been used in several challenging synthetic transformations with operationally simple and effective protocols. However, the employment of multiple characteristics of rongalite in synthetic chemistry is comparatively little known. Herein we report a separate-embedding type sulfonylmethylation of sulfoxonium ylides in which rongalite concurrently acted as a sulfone source, C1 synthon, radical initiator, and potential reducing reagent for the first time. Notably, this facile and easy-handling reaction does not require a catalyst or prefunctionalized sulfonylmethylation reagents.
Collapse
Affiliation(s)
- Xiang-Long Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Chun-Yan Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Shi-Yi Zhuang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Zhi-Cheng Yu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
6
|
Gläsel T, Jiao H, Hapke M. Synthesis of Phosphinines from Co II-Catalyzed [2+2+2] Cycloaddition Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03483] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tim Gläsel
- Institute for Catalysis (INCA), Johannes Kepler University Linz (JKU), Altenberger Strasse 69, A-4040 Linz, Austria
| | - Haijun Jiao
- Leibniz Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Strasse 29a, D-18069 Rostock, Germany
| | - Marko Hapke
- Institute for Catalysis (INCA), Johannes Kepler University Linz (JKU), Altenberger Strasse 69, A-4040 Linz, Austria
- Leibniz Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Strasse 29a, D-18069 Rostock, Germany
| |
Collapse
|
7
|
Ali R. New Dimensions in Rongalite Chemistry: The Land of Opportunities in Organic Synthesis and Material Sciences. ChemistrySelect 2020. [DOI: 10.1002/slct.202002878] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Rashid Ali
- Department of Chemistry, Jamia Millia Islamia Jamia Nagar (Okhla) New Delhi 110025 India
| |
Collapse
|
8
|
Rongalite-promoted metal-free aerobic ipso-hydroxylation of arylboronic acids under sunlight: DFT mechanistic studies. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2019.151539] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Chen XL, Tang BC, He C, Ma JT, Zhuang SY, Wu YD, Wu AX. Rongalite as a sulfone source: a novel copper-catalyzed sulfur dioxide anion incorporation process. Chem Commun (Camb) 2020; 56:13653-13656. [DOI: 10.1039/d0cc05800a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A novel copper-catalyzed sulfur dioxide anion incorporation cascade for the synthesis of 1-thiaflavanone sulfones has been disclosed using rongalite as an economic and safe sulfone source.
Collapse
Affiliation(s)
- Xiang-Long Chen
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Bo-Cheng Tang
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Cai He
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Jin-Tian Ma
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Shi-Yi Zhuang
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - Yan-Dong Wu
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan 430079
| |
Collapse
|
10
|
Synthetic applications of rongalite: A green tool in the service of Diels–Alder chemistry and beyond. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
Poshala S, Thunga S, Manchala S, Kokatla HP. In Situ Generation of Copper Nanoparticles by Rongalite and Their Use as Catalyst for Click Chemistry in Water. ChemistrySelect 2018. [DOI: 10.1002/slct.201802584] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Soumya Poshala
- Department of Chemistry; National Institute of Technology Warangal, Telangana; 506004 India
| | - Sanjeeva Thunga
- Department of Chemistry; National Institute of Technology Warangal, Telangana; 506004 India
| | - Saikumar Manchala
- Department of Chemistry; National Institute of Technology Warangal, Telangana; 506004 India
| | - Hari Prasad Kokatla
- Department of Chemistry; National Institute of Technology Warangal, Telangana; 506004 India
| |
Collapse
|
12
|
|